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 The array language J is introduced with examples chosen mostly 
from elementary statistics. The topics include frequency tabulations, 
measures of central tendency and dispersion, correlation and regression, 
analysis of variance, probability distributions, random variables, chi-
square, and nonparametric methods. The principal J verbs are 
summarized in a format which may serve as a self-contained statistical 
package. Both the J plotting facilities and the Form Editor for the 
construction of Windows forms are used for the presentation of some of 
the results. The paper and the corresponding script files are available on 
the Web at        
 http://www.cs.ualberta.ca/~smillie/Jpage/Jpage.html. 
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The quantity of meaning compressed into small space by algebraic signs, 
is another circumstance that facilitates the reasonings we are 
accustomed to carry on by their aid. 
            Charles Babbage, 1827. 
 
By relieving the brain of all unnecessary work, a good notation sets it 
free to concentrate on more advanced problems, and in effect increases 
the mental power of the race. 
          Alfred North Whitehead, 1911. 
 
Progress in mastering mathematics depends on reducing familiar 
laborious processes to automatic mental routines which no longer 
require conscious thought, this then creates mental space to allow the 
learner to concentrate on new, unfamiliar ideas.  

London Mathematical Society, Royal 
Statistical Society, Institute of 
Mathematics and its Applications, 1995. 

 

Introduction 

 J is a general-purpose language that may be used both as a programming language and also as a 
simple, executable notation for teaching a wide range of subjects. It is available for the Windows, 
WindowsCE, Mac, UNIX and Linux operating systems. The core language is identical in all versions. J 
can be integrated with other systems giving, for example, computational support to most graphics and 
spreadsheet packages. 
 
 The principles underlying the design of J have been simplicity, brevity and generality. The data 
objects in J are scalars, one-dimensional lists, two-dimensional tables, and in general rectangular arrays 
of arbitrary dimension. In addition to the usual elementary arithmetical operations of addition, 
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subtraction, multiplication, division and exponentiation, there is a large number of additional operations 
which are defined for arrays as well as for individual numbers. 
  
 J was developed by Kenneth Iverson as a modern dialect of APL, a language which he  proposed and 
which was first implemented in the early 1960s. J provides the simplicity and generality of APL, may be 
printed on most printers since it uses the standard ASCII character set, and takes full advantage of recent 
developments in computer technology. 
 
 J is available in several releases, the latest being J5.01a. Most of the documentation is available 
online or may be downloaded in either PDF or HTML format. Further information including details of the 
pricing of J5.01a is available at the Iverson Software Inc. website at www.jsoftware.com which also 
contains links to related sites.  
 
 All of the J development for the present paper has been done using J4.06 which is almost identical in 
language to J5.01a but which lacks the extensive enhancements to the environment of the latest release. 
 
 Appendix 1 gives a short two-page introduction to J which might be read now by the person 
unfamiliar with the language. Persons wishing to continue their study of J should consult J Introduction 
and Dictionary (Iverson Software Inc., 1998) which gives a complete description of the language. It is an 
indispensible reference in learning and using J. 
 
 Appendix 2 lists the principal verbs developed in this paper, except those appearing in the next  
section and in "Further examples", together with a brief statement of their syntax and forms a  J Statistical 
Package which may be used independently of the present paper. 
 
 Appendix 3 gives all of the figures referred to in the text that have been prepared using the plotting 
facilities in  J,  and Appendix 4 shows the Windows forms that have been constructed for a few of the 
examples. 
 
 Appendix 5 gives a summary of the J vocabulary and has been taken from the J online Help with a 
few modifications. 
 
 
A simple example 
 We shall introduce J with a simple example in which we are given the following list of groceries 
purchased and we are required to find the total cost:  
 1 bag oranges @ $5.99 
 3 grapefruit @ 0.59 
 2 packages cream cheese @ 3.49 
 1 bag grapes @ 4.39 
 
 We may represent the prices by the list Prices in which each price occurs once for each item 
purchased: 
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 Prices=: 0.59 5.99 0.59 0.59 3.49 3.49 4.39 

Then the total cost is given by the sum +/Prices or 19.13, where the verb +/ is derived from the verb 
plus + and the adverb insert / and gives the sum of the items in its list argument. Thus +/Prices is 
equivalent to the sum 
 0.59 + 5.99 + 0.59 + 0.59 + 3.49 + 3.49 + 4.39  .  
We may define the verb  
 sum=: +/ 
so that sum Prices is 19.13. 
 
 We may also represent the prices by one list giving the price of each item  
 PriceList=: 0.59 5.99 3.49 4.39 
and a second list 
 Qty=: 3 1 2 1 
giving the quantity of each item purchased. Thus the total amount spent on each different good is 
 Qty * PriceList  , 
where * is the verb times, or 
 1.77 5.99 6.98 4.39  , 
and the total amount spent is 
  +/ Qty * PriceList 
or 19.13. We note that PriceList is obtained from Prices by selecting its unique items, and 
 PriceList=: ~Prices 
where ~. is the verb nub.   
 
 The calculations given in the last paragraph may be performed with the defined verb wsum, for 
"weighted sum", defined as 
 wsum=: +/ @: * 
so that 
  Qty wsum PriceList 
is 19.13. The conjunction at @:, which may be interpreted as "after", is used so that the sum is applied 
after the item-by-item products have been calculated. If a left argument of 1 is used with the verb wsum, it 
is applied as a multiplier to each item of the list right argument to give an unweighted sum of these items. 
Thus the expression 1 wsum Prices is 19.13.  
 
 The two primitive verbs plus + and times * take two arguments, one on the left and one on the right, 
as, for example, 3 + 5 which is 8 and 3 * 8 which is 24. Such verbs are said to be dyadic. On the other 
hand, the verb nub ~. with a single argument on the right is monadic, and, for example,  ~. 3 2 2 7 2 
is 3 2 7.  Defined verbs may be either monadic or dyadic, and we  have sum and wsum as examples. 
These two verbs may be replaced with one ambivalent verb which may be used either monadically or 
dyadically. If Sum is such a verb, then Sum Prices is 19.13 and so is Qty Sum PriceList. The 
definition of ambivalent verbs will be discussed later in the paper. 
 
  The same symbol may represent either a monadic or dyadic function. It is important to distinguish 
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between the name of a symbol and the name or names of whatever it represents. For example, the symbol 
percent % represents the dyadic verb divide and the monadic verb reciprocal, and 4 % 5 is 0.8, and % 8 
is 0.125.  Both forms may appear in the same expression, and, for example, % 4 % 5 is 1.25, and is 
read as "the reciprocal of (4 divided by 5).  
 
 An alternative definition for the verb wsum provides an opportunity to introduce the very important 
concept of a  fork which is defined as an uninterrupted sequence of three verbs. In general, if f, g and h 
are verbs, then the monadic fork (f g h)y has the value (f y) g (h y). Before we give a simple 
example of a fork we shall introduce three verbs. The dyadic verbs lesser of <. and larger of >. give the 
lesser and larger values, respectively, of their arguments, and the dyadic verb append , joins its 
arguments. For example, 3.5 <. 6 is 3.5,  3.5 >. 6  is 6 and 1 2 3 , 4 5 is 1 2 3 4 5. Now we 
may define the verb 
 minmax=: <./ , >./  , 
where the sequence <./ , >./  is a fork, which gives the minimum and maximum items of its 
argument, and minmax Prices is 0.59 5.99 and so is  minmax PriceList.  
 
 Now an alternative definition of wsum is 
 wsum=: [: +/ * . 
Here the first verb in the fork is the monadic verb cap [: which caps the left branch of the fork so that the 
verb +/ is applied to the result of the dyadic verb * which gives the item-by-item products of the lists 
used as arguments. Which definition of wsum, or indeed of two comparable alternative definitions of any 
verb,  is preferred is a matter of taste although the use of [:, especially with extended sequences of verbs, 
often results in fewer pairs of parentheses in the final expression. 
  

 

Discrete frequencies 
 In this section we shall consider observations which are limited to non-negative integers and find the 
frequencies over either an arbitrary specified range or the nub which is the list of unique items. As an 
example we shall use the list 
 D=: 5 6 4 2 6 5 5 4 1 4 5 2 

representing the (simulated) results of throwing a die twelve times, and the list 
 r=: 1 2 3 4 5 6 
giving the range of possible values that can result on each throw. In this example the nub is the list 
 5 6 4 2 1 

since a 3 did not occur on any of the throws 
 
 We shall need the dyadic adverb table / which gives an array formed by inserting the verb it 
modifies between all possible pairs of items chosen from the two arguments. For example, if  
 p=: 1 2 3  
and  
 q=: 1 2 3 4 5  ,  
then  
 (p+/q) ; (p-/q) ; p*/q 
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is the table 
 ⁄ƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒø 
 ≥2 3 4 5 6≥0 _1 _2 _3 _4≥1 2 3  4  5≥ 
 ≥3 4 5 6 7≥1  0 _1 _2 _3≥2 4 6  8 10≥ 
 ≥4 5 6 7 8≥2  1  0 _1 _2≥3 6 9 12 15≥ 
 ¿ƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒŸ 

giving very small upper left portions of the integer addition, subtraction and multiplication tables. The 
dyadic verb link ; appends its two arguments with boxing if necessary. 
 
  Then the expression r=/D, where = is the dyadic verb equal, gives the distribution table 
 0 0 0 0 0 0 0 0 1 0 0 0 

 0 0 0 1 0 0 0 0 0 0 0 1 

 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 1 0 0 0 0 1 0 1 0 0 

 1 0 0 0 0 1 1 0 0 0 1 0 

 0 1 0 0 1 0 0 0 0 0 0 0 

where the first row shows that a 1 occurred on the ninth throw, the second row that a 2 occurred on the 
fourth and twelfth throws, etc. The row sums given by 
 +/"1 r=/D 
are 1 2 0 3 4 3 and give the required frequencies. The row summation +/"1 shows the use of the 
conjunction rank  " to give the row sums rather the column sums. 
 
 The calculations in the last paragraph may be combined in the dyadic verb  
 fr=: +/"1 @ (=/)  

whose left argument gives the range of data and right argument the list of data so that  
 r fr D  
is the required list of frequencies 1 2 0 3 4 3. The conjunction @ atop, which is similar to at 
introduced earlier and which also may be interpreted as "after", is required so that the row sums are 
calculated after the distribution table has been found. An alternative definition is 
 fr=: [: +/"1 =/  .  
 
 A two-column frequency table with the range in the first column and the corresponding frequencies in 
the second column is given by 
 frtab=: [  ,.  fr  , 
so that r frtab D is the table 
 1 1 

 2 2 

 3 0 

 4 3 

 5 4 

 6 2   .  
The dyadic verb left [ gives its left argument, and the dyadic verb stitch ,. joins its arguments in a table. 
We also mention here the dyadic verb right ] which gives its right argument, and we have that 
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1 2 3 [ 4 5 is 1 2 3 and 1 2 3 ] 4 5 is 4 5. We note the use of a dyadic fork in the definition of 
frtab. In general, the dyadic fork x (f g h) y is (x f y) g (x h y). 
 
 A frequency table with two rows rather than two columns may be given simply with the monadic verb 
transpose |: which interchanges the rows and columns of its argument so that  |: r frtab D is 
 1 2 3 4 5 6 

 1 2 0 3 4 2  . 
 
 Instead of finding the frequencies over an arbitrary range of values, we may wish to limit the range to 
only those distinct values which occur in the data. We use the monadic verb nub ~. introduced in the last 
section, and we have that the nub of the list D is  ~.D or 5 6 4 2 1. The monadic verb self-classify = 
gives the distribution table which relates the items of its argument to the nub of the argument, and, for 
example, = D is 
 1 0 0 0 0 1 1 0 0 0 1 0 

 0 1 0 0 1 0 0 0 0 0 0 0 

 0 0 1 0 0 0 0 1 0 1 0 0 

 0 0 0 1 0 0 0 0 0 0 0 1 

 0 0 0 0 0 0 0 0 1 0 0 0  . 
This table shows that a 5 occurs in the first, sixth, seventh and eleventh throws, a 6 on the second and 
fifth throws, etc. Since the row sums of the distribution table give the frequency of occurrence of the 
items of the nub, we define 
 nubfr=: +/"1 @ = 
to give the list of frequencies so that nubfr D  is 4 2 3 2 1 which means that D has four 5s, two 6s, 
etc.  
 
 A frequency table for the nub is given by 
 nubfrtab=:  ~. ,. nubfr  . 
Therefore, for the dice data D, we have that 
 (nubfrtab D) ; nubfrtab sort D 

or 
 (nubfrtab ; nubfrtab @ sort)D 

is 
 ⁄ƒƒƒ¬ƒƒƒø 
 ≥5 4≥1 1≥ 
 ≥6 2≥2 2≥ 
 ≥4 3≥4 3≥ 
 ≥2 2≥5 4≥ 
 ≥1 1≥6 2≥ 
 ¿ƒƒƒ¡ƒƒƒŸ 
where  in the first table the items of the nub occur in the order in which they occur in D and in the second 
table they occur in sorted order. We have used the "utility verb" sort, the details of which need not 
concern us here, for sorting the items of its list argument in nondecreasing order.  
  
 For a simpler definition of nubfr we introduce the dyadic adverb key /. which groups items of the 
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right noun argument according to the key given by the left noun argument and then applies its verb 
argument to each group. For example, for the dice data  
 D=: 5 6 4 2 6 5 5 4 1 4 5 2 
which has been given previously the expression 2|D is the list 
 1 0 0 0 0 1 1 0 1 0 1 0 

where the 0s and 1s correspond to even and odd numbers, respectively, showing on the corresponding 
throws. Then  
 (2|D) </. D 

is the two-item list 
 ⁄ƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒƒƒø 
 ≥5 5 5 1 5≥6 4 2 6 4 4 2≥ 
 ¿ƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒƒƒŸ 

where the first item gives the even faces and the second item gives the odd faces. The expression 
(2|D) #/. D, where # is the monadic verb tally, is the list 5 7 of the number of even and odd faces. 
Two more examples are  D </.D or  
 ⁄ƒƒƒƒƒƒƒ¬ƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒ¬ƒø 
 ≥5 5 5 5≥6 6≥4 4 4≥2 2≥1≥ 
 ¿ƒƒƒƒƒƒƒ¡ƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒ¡ƒŸ 

which groups the items of the nub and  D #/. D or 4 2 3 2 1 which counts them.  
 
 In the examples of the previous paragraph we have introduced three additional primitive verbs. The 
dyadic verb residue | gives the remainder when the left argument divides the right, the monadic verb box 
< boxes its argument, and the monadic verb tally # gives the number of items in its argument. Finally, we 
introduce the monadic adverb reflex ~ which gives its verb argument equal left and right noun arguments, 
and, for example, *~ 1 2 3 is equivalent to 1 2 3 * 1 2 3 or 1 4 9. Then the final example in the 
previous paragraph may be written as #/.~ D.  
 
 Finally we give the alternative definition of the verb for nub frequencies as 
 nubfr=: #/.~  . 
 
 

Grouped frequencies 
 The following data from Sprent (1977)  give the sentence length for the first page of the 1973  
Presidential Address of the Royal Statistical Society:  
 SentenceLength=: 11 31 45 31 12 31 39 16 21 31 36 28 31 39 31 22 33 

The transposed nub frequency table is given by the expression 
 |: nubfrtab sort SentenceLength 

and has the value 
 11 12 16 21 22 28 31 33 36 39 45 

  1  1  1  1  1  1  6  1  1  2  1   
which may not be too helpful in getting an overall view of the distribution of sentence lengths. Therefore 
we shall give in this section verbs for finding the frequencies of an arbitrary list of data when grouped in 
intervals of equal width where the end points of the class intervals are given, and, for example, the list 
2 5 8 11 would indicate that the intervals are 2 to 5, 5 to 8, and 8 to 11. 
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 The verbs for classified data are not as simple as those for discrete data which have just been 
discussed. They require the two utility verbs io which may be considered to be a generalization of the 
dyadic verb index of i. and midpts which gives the two-term moving averages of its list argument. 
As an example of the use of the first verb we have 
 1 3 5 7 9 11 io 5.2 8.6 3.4 
which is the list 2 3 1, showing that with zero-origin indexing 5.2 is in the third interval (5, 7), 8.6 is 
in the fourth interval (7, 9), and 3.4 is in the second interval (3, 5). An example of the use of the second 
verb is    
 midpts 1 3 5 7 9 11 
which is the list 2 4 6 8 10. We shall also use the verb ap for arithmetic progressions, where, for 
example, the expression ap 1 2 6 gives the list 1 3 5 7 9 11 used in the last example. 
 
 The verbs for a frequency list and frequency table for classified data are given by 
 grfr=: i.@(<:@$@[) fr io 
and 
 grfrtab=: midpts@[,.grfr  , 
respectively, the details of which are left to the interested reader. We shall use these verbs with the data 
on sentence lengths to find the number of sentences in each of the intervals (10,15), (15,20), ..., (40,45). 
The required list of intervals is given by 
 c=: ap 10 5 8 

which has the value 
 10 15 20 25 30 35 40 45  . 

Therefore, the list of grouped frequencies is  
 c grfr SentenceLength  

or 
 2 1 2 1 7 3 1  , 
and the frequency table is given by  
 c grfrtab SentenceLength  

which is 
 12.5 2 

 17.5 1 

 22.5 2 

 27.5 1 

 32.5 7 

 37.5 3 

 42.5 1  .  
 
 J programs may be incorporated into Windows forms designed by the user so that the programs may 
be used without any knowledge of the details of the computations or their implementation. These forms 
may be used within the J programming environment or independently of it. As an example the form given 
as Figure 4.1 in Appendix 4 computes summary statistics and also the frequency distribution of a set of 
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data, which may be either discrete or continuous, given the left-hand end of the first class, the class width 
and the number of classes. It is shown here for an analysis of the data on sentence lengths. With the dice 
data given in a previous section the parameters would be 0.5, 1 and 6. 
 
 
Barcharts 
 Instead of displaying the numerical values of the frequencies, we may represent the frequencies 
graphically with each frequency being represented by a bar of the appropriate length. The construction of 
the barchart requires several functions which will be introduced in the following paragraph.  
 
 The dyadic verb copy # copies items from its right argument according to the items of its left 
argument, and, for example, the expression 
 0 1 0 1 0 1 # 1 2 3 4 5 6 

is 2 4 6, and  
 (i. 4) # i. 4 
or 
 0 1 2 3 # 0 1 2 3 
is equal to 
 1 2 2 3 3 3  . 
The monadic conjunction bond & may be used to bind an argument to a dyadic verb. For example, the 
verb 
 Triple=: 3&* , 
or alternatively 
 Triple=: *&3  , 
triples its argument, and Triple 12 is 36. The utility adverb EACH performs the operation specified by 
the left argument  on each of the items specified by the right argument without preserving the boxing. For 
example,  
 1;1 2;1 2 3;1 2 3 4 
is the list 
 ⁄ƒ¬ƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒƒƒø 
 ≥1≥1 2≥1 2 3≥1 2 3 4≥ 
 ¿ƒ¡ƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒƒƒŸ  , 
and 
   +/ EACH 1;1 2;1 2 3;1 2 3 4 
is 
 1 3 6 10  . 

The above three functions are used in the expression #&'*' EACH which replicates the symbol * a 
specified number of times, and, for example, 
  (#&'*' EACH) 1 2 3 

is the array 
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 *   

 **  

 ***   .  
We introduce for subsequent use the adverb each similar to EACH but which preserves boxing, and, for 
example, 
  +/ each 1;1 2;1 2 3;1 2 3 4 

is 
 ⁄ƒ¬ƒ¬ƒ¬ƒƒø 
 ≥1≥3≥6≥10≥ 
 ¿ƒ¡ƒ¡ƒ¡ƒƒŸ  . 
 
 The verb 
 barchart=: ([: ": [: ,. [) ,"1 [: ' '&,. [: bars ]  

where 
 bars=: #&'*' EACH @ fr 

follows from the above discussion. We note the use of the monadic verb default format ": which converts 
its argument to a character array. The barchart for the dice data  
 D=: 5 6 4 2 6 5 5 4 1 4 5 2 
considered previously is given by the expression 
 (~. sort D) barchart nubfr sort D 
or more simply by 
 (~. barchart nubfr) sort D  ,  
and is 
 1 *    

 2 **   

 4 ***  

 5 **** 

 6 **   

 
 Barcharts may be drawn very simply with the plotting facilities in J which we shall introduce here so 
that we may use them in the remainder of this paper. Graphics may also be prepared by using the graphics 
facilities of some software package such as MS Works. We shall not however consider this second 
alternative here. 
 
 The J plotting package Plot requires utilities made available by the system command 
 load 'plot'  , 
which provides the verb plot which will handle most simple plots, and also the verb pd which handles 
all calls to Plot and may be used to give greater control over the graphics output. The syntax of plot is  
 opt plot data  
where data gives the data to be plotted and opt gives the plotting options. We shall use some dice data 
to give two simple examples of the use of Plot. 
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 A bar chart of the frequencies for the dice data D is given by the expression 
 'bar' plot r fr D  , 
where r=: 1 2 3 4 5 6 is the range as before, and is shown in Figure 3.1 in Appendix 3. Now 
consider throwing the die another 12 times and obtaining the results 
 DD=: 1 5 3 4 2 1 5 5 6 3 4 5   . 
A barchart showing the frequencies for both sets of data is given by 
 'bar' plot (r fr D),: r fr DD 
and is shown in Figure 3.2. We note the use of the dyadic verb laminate ,: and the expression  
 (r fr D),: r fr DD  
gives the table of frequencies 
 1 2 0 3 4 2 

 2 1 2 2 4 1   
from its left and right list arguments. 
 
 
Stem-and-leaf diagrams 
 In a stem-and-leaf diagram the data are grouped by the integer quotient when divided by 10, i.e., all 
items between 0 and 9 which have an integer quotient of 0 are grouped together, all items between 10 
and 19 which have an integer quotient of 1 are grouped together, etc. The integer quotient when 
multiplied by 10 is termed the "stem" and the remainders are termed "leaves". Furthermore, each stem is 
displayed once for the corresponding leaves. For example, the three items 15, 12 and 18 have a stem of 
10 and leaves of 5, 2 and 8, and would be displayed in a stem-and-leaf diagram as 
 ⁄ƒƒ¬ƒƒƒƒƒø 
 ≥10≥2 5 8≥ 
 ¿ƒƒ¡ƒƒƒƒƒŸ . 
 
 The stem and leaf of a non-negative integer are given by the verbs  
 stem=: 10&* @ <. @ %&10 

and 
 leaf=: 10&|  . 
The monadic verb floor <. gives the largest integer less than or equal to its argument. Therefore, the 
diagram at the end of the last paragraph is given by the expression 
 (~.@stem;leaf) 12 15 18  . 
 
 The two verbs of the last paragraph may be used to give the very simple verb 
 SLdiag=: ~.@stem ;"0 stem </. leaf  . 
for a stem-and-leaf diagram where /. is the adverb key introduced in a previous section..  
 
 For the data on sentence lengths used previously we have 
 sort SentenceLength 

to be the list 
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 11 12 16 21 22 28 31 31 31 31 31 31 33 36 39 39 45 

so that the stem-and-leaf diagram is the following: 
   SLdiag sort SentenceLength 
⁄ƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø 
≥10≥1 2 6              ≥ 
√ƒƒ≈ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¥ 
≥20≥1 2 8              ≥ 
√ƒƒ≈ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¥ 
≥30≥1 1 1 1 1 1 3 6 9 9≥ 
√ƒƒ≈ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¥ 
≥40≥5                  ≥ 
¿ƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ 
 
 A slight modification to the verb for the stem-and-leaf diagram will give the verb 
 SLfrtab=: ~.@stem ,. stem #/. leaf 

for a "stem-and-leaf frequency table", and we have that 
 SLfrtab sort SentenceLength 

is the table 
 10  3 

 20  3 

 30 10 

 40  1  . 
 
 The J plot package may be used to display this frequency table as follows: 
 pd 'new' 

 pd 'type bar' 

  pd 'ytic 1 0' 

 pd 'title Stem & Leaf Table' 

 pd 'xlabel "10" "20" "30" "40"' 

 pd 3 3 10 1 

 pd 'show' 

The resulting graph is shown in Figure 3.3. 
 
 
Means 
 The arithmetic mean is defined as the sum of the observations divided by the number of observations. 
The geometric mean of n observations is defined as the nth root of the product of the observations. The 
harmonic mean is the reciprocal of the arithmetic mean of the reciprocal of the observations.  
 
 If we have a list of observations 
  w=: 62.3 58.5 44.6 50.3  , 
then the arithmetic mean is 
 +/w % #w 
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which has the value 53.925. The expression for the arithmetic mean may be written as 
 (+/ % #) w  , 
and we may define the verb 
 am=: +/ % # 
and am w is 53.925. 
 
 The geometric mean may be defined as 
 gm=: # %: */ , 
and gm w is equal to 53.4733. This is another example of a fork and gm w is equivalent to  
 (#w) %: */w  .  
In this definition we have the dyadic verb root %: which gives an arbitrary root, and, for example, 
3 %: 64 is 4 and 2 %: 64 is 8. Since the monadic form of %: is square root, this last expression 
may also be written as  %: 64. 
 
 Similarities in the definitions of the arithmetic and geometric means may be seen from the two 
definitions 
 am=: +/ % # 
and 
 am=: # %~ +/ 
for the arithmetic mean, and 
 gm=: # %: */ 
and 
 gm=: */ %:~ # 
for the geometric mean. We note the dyadic adverb passive ~ which interchanges the left and right 
arguments of its associated verb. For example, 5 %~ 12 is 2.4, and we may define the verb 
 into=: %~   
and 5 into 12 is 2.4. 
  
 The harmonic mean may be defined as either 
 hm=: % @ am @: % 

or 
 hm=: [: % [: am %  , 
and we have that hm w is 53.0169. In the first definition we note the use of the conjunctions @ and @: 
which have been introduced previously.   
 
 The arithmetic, geometric and harmonic means may be calculated by the single verb 
  allmeans=: am,gm,hm 

so that allmeans w has the value 53.925 53.4733 53.0169.  
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 The observations in the four-item list w represent the yield in bushels per acre resulting from four 
replications with one variety of oats when the seeds receive one particular treatment before planting and 
have been taken from Steel and Torrie (1960). In all there were three different seed treatments, and a 
second variety of oats which we shall ignore in this example but will include in a later one. The data for 
the three treatments may be represented by the three-by-four array W which has the value 
 62.3 58.5 44.6 50.3 

 63.4 50.4   45 46.7 

 64.5 46.1 62.6 50.3 

which may be formed by the statement 
 W=: 3 4 $ 62.3 58.5 44.6 50.3 63.4 50.4 45 46.7 64.5 46.1 62.6 50.3 
where the dyadic verb shape $ shapes the right argument according to the left argument. The arithmetic 
means of the replications (columns) are given simply by the expression am W which has the value 
 63.4 51.6667 50.7333 49.1  . 
The treatment (row) means are given by am"1 W which is equal to 
 53.925 51.375 55.875   
where the conjunction rank "  applies the verb am to the rows of W. Verbs for row and columns may be 
defined for convenience if desired, and, for example, if 
 amrows=: am"1 
and 
 amcols=: am  , 
then amrows W is 
 53.925 51.375 55.875 

and amcols W is 
 63.4 51.6667 50.7333 49.1  . 
 

 For a further example of the calculation of the means defined in this section we shall use the 
following data giving the 1988 per capita income for the fifty American states taken from Sternstein 
(1994) and given by the 50-item list Income displayed here as a table with 5 rows and 10 columns: 
 5 10$Income 

126 195 149 122 189 164 228 177 165 150 

169 127 176 147 148 159 128 122 150 193 

207 164 168 110 155 127 152 174 190 219 

125 193 141 127 155 133 150 162 168 128 

125 137 146 120 154 176 166 117 154 137 

The three means are simply calculated as follows: 
   am Income 

155.28 

   gm Income 

153.009 

   hm Income 

150.83 

 allmeans Income 
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155.28 153.009 150.83 

 

 We have already introduced the rank conjunction " to give the row sums of a two-dimensional array. 
Two examples are given in the verb 
 fr=: [: +/"1 =/ 
for discrete frequencies and the verb 
 amrows=: am"1 

of this section for the row means. Before proceeding further with statistical concerns we should have a 
closer look at the very important concept of the rank of an array. 
 
 A variable, or noun, may be a single atom or a list or a table or an array of higher dimension. The 
number of axes in an array is its rank, and atoms, lists and tables are of rank 0, 1 and 2, respectively, 
while higher-dimensional arrays have ranks greater than 2. The shape of an array is given by the monadic 
verb shape of $ which gives the length of each axis of its argument, so that the number of items in the 
shape is the rank. Therefore, for any array a the shape is $a and its rank is #$a. The list  
 w=: 62.3 58.5 44.6 50.3 
introduced earlier in the section has shape $w or 4 and rank #$w or 1. Also the table W whose value is  
 62.3  58.5  44.6  50.3 

 63.4  50.4  45.0  46.7 

 64.5  46.1  62.6  50.3 

has 3 rows and 4 columns and its shape is $W or 3 4 and its rank is #$W or 2. As a third example the 
three-dimensional array  
 T=: i. 3 4  , 
where  i. is the monadic verb integers which gives non-negative integers, has the value 
    0  1  2  3 
  4  5  6  7 

  8  9 10 11 

 

 12 13 14 15 

 16 17 18 19 

 20 21 22 23 

and $T is 2 3 4 and #$T is 3. 
 
 The last k axes of a variable determine a rank k-cell  or more simply a k-cell. For example, for the 
table T the 0-cells are the atoms 0, 1, 2 ..., the 1-cells are the rows 0 1 2 3, 4 5 6 7, ..., the 2-cells 
are the two 3-by-4 tables, and the 3-cell is the array T. For an array of rank r the (r-1)-cells are known as 
the (major) items. The rank conjunction " is used to apply a primitive or defined verb to each of the k-
cells of its argument so that in the expression u"k y the verb u is applied to each k-cell of the argument 
y.  
 
 One example of the use of the rank conjunction was for row and column means. The row means were 
given by  
 amrows=: am"1 
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and the column means by 
 amcols=: am   
which could also be defined as 
 amcols=: am"2  .  
Finally we could define the verb 
 amitems=: am"0 

to give the means of the items of it argument which are the items themselves although there would be no 
purpose in doing so. As another example for the array T we have +/"1 T equal to 
  6 22 38 
 54 70 86  , 
+/"2 T equal to 
 12 15 18 21 

 48 51 54 57 
and  +/"3 T equal to 
 12 14 16 18 

 20 22 24 26 

 28 30 32 34  . 
    
 
Other averages 
 In this section we shall give J verbs for two other commonly used measures of central tendency, the 
median and the mode. The median is the middle of the sorted observations and the mode is the most 
frequently occurring observation or observations. 
  

 The median of a list of observations is defined as the middle observation when the observations are 
arranged in sorted order if the number of observations is odd and the average of the two middle 
observations if the number is even. For example, for the list   
 u=: 22 14 32 30 19 16 28 21 25 31   
the median is 23.5 since the items in sorted order are 
 14 16 19 21 22 25 28 30 31 32  
and the middle items are 22 and 25. 
 
 For a list with an odd number of items, 7, say, the index of the middle item is simply the number of 
items decremented by 1 and then divided by 2, or -:<:7 which is equal to 3, where <: is the monadic 
verb decrement which subtracts 1 from its argument and -: is the monadic verb halve which halves its 
argument. (Note that indexing starts with 0 so that the indices for a seven-item list are 0, 1, 2, 3, 4, 5 and 
6.)  However, for a list with an even number of items, 8, say, a similar calculation would give the value 
3.5 which is midway between the required indices 3 and 4. These two calculations may be combined  in 
the expression 
 (<.,>.) -: <: , 
where the monadic verb ceiling >. gives the smallest integer greater than or equal to its argument. For an 
argument of 7 this expression is 3 3 and for an argument of 8 is 3 4. Thus, in either case the 
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corresponding items need only be selected and averaged to give the median.  Therefore, we may define 
the verb 
 midindices=: (<.,>.)@-:@<:@#  , 
and, for example, midindices x is equal to 3 3 if x is a seven-item list and is equal to 3 4 if x is an 
eight-item list. A verb for the median is  
 median=: [: am midindices { sort 

where { is the dyadic verb from which selects from its right argument those items whose indices are given 
by the left argument, and median u is 23.5. 
 
 The mode is defined as that item which occurs most frequently, and, for example, for the list   
 D=: 5 6 4 2 6 5 5 4 1 4 5 2  
of dice data the mode is 5 since this value occurs four times. The mode may be found very simply using 
one of the frequency verbs defined previously.  
 
 First we shall define the utility verb 
 imax=: (] e. >./) # i.@# 

to give the index or indices of the maximum item in a list, and, for example,  
 imax 7 10 4 3 10 0 

is the list 1 4 of indices of the maximum item 10. The dyadic verb member  e. gives a list of 0s and 1s 
with the 1s indicating the matches of the right argument in the left, and, for example,   
 7 10 4 3 10 0 e. 10  

is the list 0 1 0 0 1 0.  
  
 The verb mode may now be defined as 
 mode=: imax@nubfr { ~. 

and mode D is 5. Two more examples  are 
   mode 1 2 3 2 3 2 3 4 

which is 2 3, and 
 mode 1 2 3 4 
which is 1 2 3 4. 
 
 The median and the mode for the income data introduced in the last section are median Income 
which is 153 and mode Income which is 150 127, where the sorted income data are given by 
 5 10 $ sort Income  

which is the table 
 110 117 120 122 122 125 125 126 127 127 

 127 128 128 133 137 137 141 146 147 148 

 149 150 150 150 152 154 154 155 155 159 

 162 164 164 165 166 168 168 169 174 176 

 176 177 189 190 193 193 195 207 219 228  . 
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Variability 
 The variance of a list of observations is defined as the sum of squares of the deviations of the 
observations from the arithmetic mean divided by one less than the number of observations. The standard 
deviation is the square root of the variance. The three quartiles of a sorted list are defined so that one 
quarter of the items lie between consecutive quartiles or between an end of the list and the adjacent 
quartile. The second quartile is thus the median. 
  
 If we have the list 
 w=: 62.3 58.5 44.6 50.3  
which was introduced in a previous section, then deviations from the mean which is equal to 53.925  are 
given by 
 w - am w 
which is equal to 
 8.375 4.575 _9.325 _3.625  . 
The expression for deviations from the mean may be represented more simply as (- am) w, where the 
two-verb sequence in parentheses is known as a hook. Thus we may define the verb  
 dev=: - am   
so that dev w is the above list of deviations.  The verb 
 ss=: [: +/ [: *: dev  , 
where *: is the monadic verb square, gives the sum of squares of deviations from mean and ss w is 
191.167. The variance is 
 var=: ss % <:@#  ,    
and the standard deviation is 
 sd=: %: @ var  . 
Thus  var w is 63.7225 and sd w is 7.98264. 
 
 We noted above the use of a monadic hook in the definition of the verb dev. In general, for verbs g 
and h the monadic hook (g h) y is equal to y g (h y). Dyadic hooks may also be defined. We may 
alternatively define the verb for deviations from the mean as 
 dev=: - +/ % # 

which is a fork followed by a hook.  
 
 The verbs for the arithmetic mean, variance and standard deviation may be defined using primitive 
verbs only and are given here for the interested reader:  
 am=: +/ % # 

 dev=: - +/ % # 

 ss=: [: +/ [: *: [ - +/ % # 

 var=: (# - 1:) %~ [: +/ [: *: ] - +/ % # 

 sd=: [: %: ([: <: #) %~ [: +/ [: *: ] - +/ % # 
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 Since the second quartile is simply the median, we may define it by the synonym 
 Q2=: median  .  
The first quartile is then the median of all those items in the original list which are less than the median 
and thus may be defined as 
 Q1=: [: Q2 ] #~ Q2 > ]  . 
Similarly the third quartile is the median of all items greater than the median and may be defined as  
 Q3=: [: Q2 ] #~ Q2 < ]   .   
If we recall the list  
 u=: 22 14 32 30 19 16 28 21 25 31 
of the previous section, we have that sort u is the list 
 14 16 19 21 22 25 28 30 31 32 

 and   
 (Q1,Q2,Q3) u  
is the three-item list 19 23.5 30 giving the three quartiles.  
 
 
Summaries 
 One brief summary of a list of observations is the five-statistic summary consisting of the minimum 
observation, first, second and third quartiles, and maximum observation of its list argument. This may be 
defined by   
 five=: <./,Q1,Q2,Q3,>./  

 and, for example, five Income is  
 110 128 153 169 228  . 
 

 A more complete summary is provided by the monadic verb summary which provides a number of 
statistics with suitable labels, and summary Income gives the following table: 
 summary Income 

Sample size         50     

Minimum            110.000 

Maximum            228.000 

Arithmetic mean    155.280 

Variance           748.369 

Standard deviation  27.356 

First quartile     128.000 

Median             153.000 

Third quartile     169.000 

Geometric mean     153.009 

Harmonic mean      150.830 

 
 The verb summary has been defined explicitly with a given argument and with a definition which 
extends over several lines. The first three lines and the last line of the verb are as follows with the omitted 
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lines being indicated by an ellipsis given as a comment: 
 summary=: 3 : 0 

 r=.  'Sample size      ',5.0 ": #y. 

 r=. r,: 'Minimum           ', 8.3 ": <./y. 

 r=. r, 'Maximum           ',8.3": >./y. 

 NB. ... 

 r=. r, 'Harmonic mean    ',8.3": hm y. 

 ) 

We  note  the use of the dyadic verb laminate ,: for joining arrays of  different shapes, and the dyadic 
verb format ":  whose left argument specifies the width and number of decimal places displayed in the 
right argument and which gives a literal result. Note that the right argument of an explicit verb is 
represented by y.. 
 
 To illustrate some of the main features of explicit definition we shall define the following four very 
simple verbs f1, f2, f3a and f3b:  
 f1=: 3 : 0  f2=: 3 : 0  f3a=: 3 : 0  f3b=: 3 : 0 

 % y.         :            % y.    1 f3b y. 

 )            x. % y.      :     : 

            )            x. % y.   x. % y. 

           )     ) 

The monadic verb f1 gives the reciprocal so that, for example, f1 2.5 is 0.4, and the dyadic verb f2 
gives the quotient of its two arguments so that 15 f2 6 is 2.5. The verbs f3a and f3b are ambivalent 
and each gives the reciprocal when used monadically and the quotient when used dyadically, i.e., 
f3a 2.5 is 0.4 and 15 f3a 6 is 2.5, with the same results for f3b. 
 
 The first line in each definition gives the name and specifies that a verb is being defined. The last line 
of each definition is a right parenthesis. A colon : separates the monadic and dyadic definitions and is 
omitted for a monadic verb. Left and right arguments are represented by x. and y., respectively. 
 
 In an introductory section we gave the monadic verb sum and and the dyadic verb wsum for 
unweighted and weighted sums, respectively. It was stated that these verbs could be replaced by one 
ambivalent verb Sum that could be used either monadically or dyadically. Such a verb may be defined as 
 Sum=: 3 : 0 

 1 Sum y. 

 : 

 +/x. *  y. 

 ) 

and we have Sum Prices is 19.13 and Qty Sum PriceList is 19.13 as stated previously. 
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Correlation and regression 
 The correlation coefficient between two sets of observations is defined as the covariance of the two 
sets of observations divided by the product of the standard deviations, where the covariance is the product 
of the deviations of the observations from their respective means divided by one less than the number of 
pairs of observations. The regression coefficients define the least squares best-fitting straight line to the 
pairs of observations. To illustrate the calculations in this section we shall use the data 
 Yield=: 5.27 5.68 6.25 7.21 8.02 8.71 8.42  

and 
 Water=: 12 18 24 30 36 42 48 

from Hoel (1966) on crop yield (bushels of alfalfa per acre) and amount of water applied (inches).  
 
 The sum of products is given by  
 sp=: [: +/ *&dev  , 
where the & is the dyadic conjunction compose, and x *&dev y is equivalent to (dev x) * (dev y), 
so that  
 Water sp Yield 

is 103.68. The covariance is given by 
 cov=: sp % [: <: #@] 
and 
 Water cov Yield 
is 17.28. The correlation coefficient is 
 cor=: cov % *&sd 

and 
 Water cor Yield 

is 0.972408. 
 
  In order to find the regression line expressing the dependence of yield on water we first define the 
two-column table 
  X=. 1,"0 Water 
with 1s in the first column and the values of Water in the second column. The regression coefficients are 
given by 
 b=. Yield %. X  
where %. is the dyadic verb matrix divide and gives in this instance the least-squares solution for a 
coefficient matrix X and right-hand side Yield. The value of b rounded to three figures is  3.99 0.103 
so that the least-squares  estimate of yield ŷ  for amount of water x is  
 ŷ = 3.99 + 0.103x.  
The estimated values of the yield are given by X mp b, where mp is the utility verb for the matrix 
product, and are, rounded to two decimal places, equal to 
 5.23 5.85 6.46 7.08 7.70 8.31 8.93  .  
  
 The following is the verb SR which gives the regression coefficients and some of the statistics 
required to test for the significance of the linear regression:  
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 SR=: 3 : 0 

 : 

 'b0 b1'=. b=. y.%.X=.1,"0 x. 

 yest=. b0+b1*x. 

 SRtable=: x. ,. y. ,. yest 

 sst=. +/*:y.-am y. 

 sse=. +/*:y.- X +/ . * b 

 mse=. sse%<:<:$y. 

 seb=. %:mse%+/*:x.-am x. 

 rsq=. 1-sse%sst 

 r=. 'Slope       ',10.5": b1 

 r=. r,: ' S.E.       ',10.5": seb 

 r=. r,'Intercept   ',10.5": b0 

 r=. r,'S.E. of est.',10.5": %:mse 

 r=. r,'Corr. sq.   ',10.5": rsq   

 ) 

We note the use of indirect assignment to define both the intercept b0 and the slope b1 in the same 
statement. The variable SRtable is a three-column table with the observed values of the independent and 
dependent variables in the first two columns and the estimated values of the dependent variable in the 
third column. Its value is given by global assignment is (global) =: making it available outside the 
definition of SR. All other variables are given by local assignment is (local) =. and are not available 
outside the definition. 
 
 The expression Water SR Yield gives the results 
 Slope          0.10286 

  S.E.           0.01104 

 Intercept      3.99429 

 S.E. of est.   0.35036 

 Corr. sq.      0.94558 

and the value 
 12 5.27 5.22857 

 18 5.68 5.84571 

 24 6.25 6.46286 

 30 7.21    7.08 

 36 8.02 7.69714 

 42 8.71 8.31429 

 48 8.42 8.93143 

to the variable SRtable.  If we let 
 Yest=:  5.23 5.85 6.46 7.08 7.7 8.31 8.93   
be the estimated values of the yield, then the J plot package may be used as follows to give the observed 
values and linear regression line as shown in Figure 3.4. 
 pd 'new' 
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 pd 'type point' 

 pd Water; Yield  

 pd 'type line' 

 pd Water;Yest 

 pd 'show' 

 
 The calculations given above may be generalized to accommodate an arbitrary number of 
independent variables, and verbs for variance-covariance and correlation tables and for multiple linear 
regression are described in Appendix 2. 
 
 
Analysis of variance 
 The main computational problem in the analysis of variance is the partition of the total variation of a 
number of observations as measured by the sum of squares of deviations from the arithmetic mean into a 
number of orthogonal components for each of several main effects and interactions. If the data are 
arranged in a rectangular array with an axis for each factor and one for replications, then a major task of 
the partitioning process is the calculation of some, or possibly all, of the marginal totals of various 
subarrays. For each set of marginal totals a weighted sum of squares is calculated from which the required 
analysis-of-variance table may be found relatively simply.  
 
 In this section we shall discuss briefy the calculation of marginal totals and then give an example of 
the use of a J program that can accommodate data for designs of arbitrary structure and size. For sample 
data we shall use those of a previous section giving the yield for various treatments on one variety of oats 
and then include data for a second variety. 
 
 For the observations for the first variety-treatment combination given by the list w with the value 
 62.3 58.5 44.6 50.3   
there are  the observations themselves and their sum 215.7 given by +/w. For a one-dimensional array 
there are thus 2 different marginal totals.  
 
 The three treatments for the first variety are given by the two-dimensional array W which is  
 62.3  58.5  44.6  50.3 

 63.4  50.4  45.0  46.7 

 64.5  46.1  62.6  50.3  . 
There are now four different quantities to calculate: the observations W, the row sums +/"1 W with the 
value 
 215.7 205.5 223.5  , 
the column sums +/W with the value 
 190.2 155 152.2 147.3  ,  
and the overall sum +/+/W which is 644.7. For a two-dimensional array there are thus 2 * 2 or 4 
different marginal totals.  
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 To simplify the calculation of the marginal sums for an arbitrary array we introduce the utility verb 
msum where the right argument gives the array and the left argument indicates the marginal sum to be 
calculated. For the list w we have that 0 msum w is the sum 215.7 of the items of the list, and 1 msum w 
is the given list 62.3 58.5 44.6 50.3. For the two-dimensional array W we have that 0 1 msum W is 
equal to the column sums, 1 0 msum W the row sums, and 0 0 msum W the total sum. The array itself 
is given by 1 1 msum W.  
 
 If the data for the second variety of oats are given in the array X, say, with the value 
 75.4  65.6  54.0  52.7 

 70.3  67.3  57.6  58.5 

 68.8  65.3  45.6  51.0  , 
then the statement  
 Vboth=: W,: X 

gives the three-dimensional array 
 62.3  58.5  44.6  50.3 

 63.4  50.4  45.0  46.7 

 64.5  46.1  62.6  50.3 

  

 75.4  65.6  54.0  52.7 

 70.3  67.3  57.6  58.5 
 68.8  65.3  45.6  51.0  

representing all of the observations for both varieties. This array has the shape 2 3 4 with 2 levels each 
with 3 rows and 4 columns with the levels representing the varieties and the rows and columns 
representing treatments and replications, respectively. If we count the array itself and the total over all of 
the data, there will be 2 * 2 * 2 or 8 different marginal sums to compute. For example,  
 0 1 1 msum Vboth 
is the sum over the varieties 
 137.7 124.1  98.6 103.0 

 133.7 117.7 102.6 105.2 

 133.3 111.4 108.2 101.3  , 
and  
 0 1 0 msum Vboth  

is the sum over varieties and replications 
 463.4 459.2 454.2  . 
 
 Having introduced and illustrated the calculation of marginal sums, we omit any further details of the 
use of J in the definition of verbs for analysis-of-variance calculations. These calculations may be done 
by the ambivalent verb ANOVA whose right argument is a rectangular array of arbitrary rank giving the 
observations. If used monadically, the various components are represented by the letters A, B, AB, C, ..., 
Total and all 2^n components are given for an array of rank n. If used dyadically, the left argument 
specifies the components with Total being assumed. However specified, the analysis-of-variance table 
specifies the components in the first column and the corresponding degrees of freedom, sums of squares 
and mean squares in the second, third and fourth columns. The following shows the use of ANOVA with 
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the above oats data: 
    ANOVA Vboth       'A B AB C' ANOVA Vboth 
 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø 
 ≥A        1   318.28167   318.28167≥A          1   318.28167   318.28167≥ 
 ≥B        2     5.30333     2.65167≥B          2     5.30333     2.65167≥ 
 ≥C        3  1026.06333   342.02111≥AB         2   106.60333    53.30167≥ 
 ≥AB       2   106.60333    53.30167≥C          3  1026.06333   342.02111≥ 
 ≥AC       3   132.34167    44.11389≥Error     15   455.12167    30.34144≥ 
 ≥BC       6    68.01667    11.33611≥Total     23  1911.37333            ≥ 
 ≥ABC      6   254.76333    42.46056≥                                    ≥ 
 ≥Total   23  1911.37333            ≥                                    ≥ 
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ  
 

  
 Finally, we shall give a verb for a one-factor design with an unequal number of replications for each 
treatment. For this we require the monadic verb 
 wsqs=: ([: *:+/) % #   

to give the square of the sum of the items of a list divided by the number of items, and, for example, 
 wsqs 1 2 3 4 5 
is 45. The analysis of variance is given by the monadic verb aov1 defined as follows: 
 aov1=: 3 : 0             

 D=. y. 

 DFerr=. (DFtot=. <:#;D) - DFtr=. <:#D 

 SStr=. (+/ wsqs EACH D) - CT=. wsqs ;D 

 SStot=. (+/ *: ;D) - CT 

 SSerr=. SStot - SStr 

 'MStr MSerr'=. (SStr,SSerr) % DFtr,DFerr 

 F=. MStr%MSerr 

 r1=. 'Treatments', 5.0 12.5 12.5 8.1":DFtr,SStr,MStr,F 

 r2=. 'Error     ', (5.0 12.5 12.5":DFerr,SSerr,MSerr),8$' ' 

 r3=. 'Total     ', (5.0 12.5":DFtot,SStot),20$' ' 

 r1,r2,:r3 

 ) 

The argument is a list, each item of which is a list giving the replications for each treatment. The result is 
a table with rows giving treatment, error and total terms and columns giving sums of squares, degrees of 
freedom, mean squares, and F-value.  
 
 As an example we shall use the following data given by the variable D1 from Bennett and Franklin 
(1954) giving observations from a test of corrosion in a manufacturing process in three different 
founderies:  
 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒø 
 ≥84 60 40 47 34≥67 92 95 40 98 60 59 108 86≥46 93 100≥ 
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒŸ  
The analysis-of-variance table for these data is given by aov1 D1 and is 
 Treatments    2  2329.09804  1164.54902     2.2 

 Error        14  7398.66667   528.47619         
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 Total        16  9727.76471   

 

 
Probability distributions 
 We shall give J verbs for some of the commonly occurring discrete and continuous probability 
distributions and also examples of their use. The discrete distributions are the binomial, Poisson, 
hypergeometric and geometric distributions, and the continuous distributions are the normal, t-, chi-
square and F-distributions. First of all we shall introduce some J primitive verbs used in their definition. 
 
 We have already seen the monadic verb integer i. which gives the non-negative integers up to but 
not including the argument, and, for example, i. 5 is 0 1 2 3 4 and i. 3 4 is 
 0 1  2  3 

 4 5  6  7 

 8 9 10 11  . 
Two related defined verbs which may be considered utilities are 
 pos=: [: >: i. 

and  
 ei=: [: i. >: 

for postive integers and extended integers, respectively, and pos 5 is 1 2 3 4 5 and ei 5 is 
0 1 2 3 4 5.  
 
 The monadic verb factorial ! gives the familiar factorial function for a non-negative integer argument 
and the gamma function for other arguments. Thus !5 is 120, !0 is 1 and !2.5 is 3.32335. The gamma 
distribution may be defined by the verb 
 gamma=: !@<:  , 
and, for example, gamma x is equivalent to !x-1. The dyadic form of ! is the verb out of  which gives 
combinations, and 3!5 is 10, the number of combinations of 5 things taken 3 at a time. The verb 
 bc=: ei ! ] 

gives binomial coefficients, and, for example, bc 5 is 1 5 10 10 5 1, and  
 bc EACH ei 5  
is 
 1 0  0  0 0 0 

 1 1  0  0 0 0 

 1 2  1  0 0 0 

 1 3  3  1 0 0 

 1 4  6  4 1 0 

 1 5 10 10 5 1  , 
a segment of Pascal's triangle.  
 
 The exponential function is given by the monadic verb exponential ^ and ^x is equivalent to ex so, for 
example, ^1 is 2.71828. The dyadic form of ^ is power, and, for example, 2 ^ 6 is 64. The monadic 
verb natural log ^., which will be used in the next section, gives the natural logarithm of its argument 
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and ^. 10 is 2.30259. 
 
 The verb p gives various constants based on π, and, for example, 1p1 is 3.14159, 2p1 is 6.28319, 
1p2 is 9.8696, and 1p_0.5 is 0.56419 which may also be expressed as %%:1p1. 
 
 The monadic verb not -. gives the complement of a boolean argument and the complementary 
probability if the argument is a probability, and, for example, -. 0 1 is 1 0 and -. 0.75 is 0.25. 
 
 The verbs for continuous distributions require the integral or anti-derivative adverb I such that the 
expression f I x for some verb f gives the area under the graph of f from 0 to x.   
 
 For the discrete distributions we shall give definitions, both in conventional notation and in J, and 
some examples of their use, For the continuous distributions, we give the verbs for the cumulative and 
probability density functions and a few examples of the use of the latter verbs.  
 
 The probability of x successes in n independent binomial trials with probability p of success in a 
single trial is equal to nCxpx(1-p)n-x for x = 0, 1, 2, ..., n, where nCx is the number of  combinations of n 
things taken x at a time.   
 binomial=: 3 : 0 

 : 

 'n p'=. x. 

 x=. y. 

 (x!n) * (p^x) * (-.p)^n-x 

 ) 

 3 0.6 binomial 0 1 2 3        

0.064 0.288 0.432 0.216 
 

 The Poisson distribution applies when the probability of success on any one trial is very small and the 
number of trials is large so that the expected number of successes, the product of these two quantities, is 
of moderate size. If the mean number of successes is λ, then the probability of x successes, where x is a 
non-negative integer, is e-λλx/x!.  
 poisson=: ^@-@[ * ^ % !@] 

 1.5 poisson 0 1 2 3 4        

0.22313 0.334695 0.251021 0.125511 0.0470665 

 
 The geometric distribution gives the probability of first success in a sequence of binomial trials with 
constant probability of success. The probability of the first success occurring on the nth trial  with 
probability p of success on a single trial is equal to (1-p)n-1p, for n a positive integer.  
 geometric=: [ * -.@[ ^ <:@] 

 0.4 geometric 1 2 3 4 5 6       

0.4 0.24 0.144 0.0864 0.05184 0.031104 
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 The binomial distribution assumes a number of independent trials with the probability of success 
remaining constant throughout. The hypergeometric distribution assumes that this probability changes 
during the trials. As an example, if k balls are drawn at random without replacement from an urn 
containing m red balls and n black balls, where the red and black balls are considered to be Type A and 
Type not-A, respectively, it may be shown that the probability of drawing x red balls is 
 mCx

 nCk-x / m+nCk  , 
where x = 0, 1, 2, ..., k.  
 hg=: 3 : 0 

 : 

 'm n k'=. x. 

 x=. y. 

 (x!m) * ((k-x)!n) % k!m+n 

   ) 

 4 6 3 hg 0 1 2 3    NB. m = 4 (red), n = 6 (black), k = 3 

0.166667 0.5 0.3 0.0333333          
 
 NDISTN=: 3 : 0 

 ndistn I y. 

 )   

 ndistn=: 3 : 0 

 Const=. %:0.5p_1 

 Const * ^--:*:y. 

 ) 

 NDISTN 0 1 2 3 

0 0.341345 0.47725 0.49865 

 

 TDISTN=: 3 : 0 

 : 

 x.&tdistn I y. 

 ) 

 tdistn=: 3 : 0 

 : 

 n=. x. 

 Const=. (gamma -:>:n) % (gamma -:n) * %:n*1p1 

 Const * (>:(*:y.)%n) ^ --:>:n 

 ) 

 5 TDISTN 2.015 2.571 3.365 

0.449997 0.475013 0.490001 
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 CSDISTN=: 3 : 0 

 : 

 x.&csdistn I y. 

 ) 

 csdistn=: 3 : 0 

 : 

 n=. x. 

 Const=. % (2^-:n) * gamma -:n 

 Const * (y. ^ -:<:<:n) * ^ --:y. 

 ) 

 10 CSDISTN 12.5 16 18.3 

0.747015 0.900368 0.949891 

  

 FDISTN=: 3 : 0 

 : 

 'm n' =. x. 

 if. m=1 do. 

    2 * n&tdistn I %:y. 

    else. 

    x.&fdistn I y. 

 end. 

 ) 

 fdistn=: 3 : 0 

 : 

 'm n'=. x. 

 Const=. (gamma -:m+n) % (gamma -:m) * gamma -:n 

 Const * (m^-:m) * (n^-:n) * (y.^-:<:<:m) * (n+m*y.)^--:m+n 

 ) 

 5 20 FDISTN 2.16 2.71 3.29 4.1 

0.900263 0.950012 0.975138 0.990169 

 1 15 FDISTN 4.54 8.68 

0.949932 0.989989 
 

 As an example of the use of the continuous distributions consider the last example of the previous 
section giving the analysis-of-variance table for a one-factor design with an unequal number of 
replications. The probability of getting an F-value greater than the 2.2 with numerator and denominator 
degrees of freedom of 2 and 14, respectively, is given by the expression 2 14 FDISTN 2.2 which is 
0.112326. Since the 5%-value is 3.74, we may conclude there is no difference between founderies. 
  
 
Random variables 
 In this section we shall discuss two primitive verbs in J for generating random non-negative integers 
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and then use them to develop verbs for the generation of uniform, normal and exponential random 
variables. We shall give a few simple examples of the simulation of rolling dice and finally give a 
simulation method of finding an estimate for the value of π. 
 
 We shall first introduce some constant verbs since two of them will be used in this section. The 
nineteen constant  verbs _9:, . . . , 0:, . . ., 9: give the same constant value for an arbitrary argument. 
For example, the expressions 1: 5 and 1: 1 2 3 are both equal to 1. A more meaningful example is 
the verb 
 odd=: 1: + 2: * i.  
for successive odd integers, and, for example, odd 5 is 1 3 5 7 9 and odd _5 is 9 7 5 3 1. Finally  
we introduce the constant verb infinity _: which has an infinite result for all arguments, and, for example, 
_: 5 is _ and so is  2 _: 5. A constant verb with an arbitrary value may be defined very simply by 
using an infinite rank as, for example, 25"_ and (25"_) 3.5, say, is 25. 
 
 We also note the monadic verb double +: which doubles its argument, and, for example,  +: 5 is 10. 
 
 Random selection of non-negative integers is given by the monadic verb roll ? which gives sampling 
with replacement, and ? n gives a uniform random selection from the population i. n. For example, 
? 10 could have any value between 0 and 9, inclusive, and two successive values of ?10$6 could be 
  4 0 2 5 1 3 3 3 1 3    
and  
 5 4 4 5 1 4 0 1 5 3  . 
 
 The dyadic verb deal ? gives sampling without replacement and the expression m ? n is a list of m 
items chosen at random without replacement from the list i. n. For example, two possible values of  
4 ? 6 could be 1 2 5 4 and 0 4 1 3, and 10?10 which could have the value 
 7 4 8 9 0 5 6 3 1 2  
is a random permutation of the first 10 non-negative integers. 
 
 The defined verb  
 Die=: [: >: [: ? [ $ 6: 

simulates the throwing a die an arbitrary number of times as illustrated by the following examples: 
 Die 10 

1 5 3 4 2 1 5 5 6 3 

 Die 10 

4 5 1 1 4 5 1 3 1 3 

 Die 12 

1 5 3 4 2 1 5 5 6 3 4 5 

The list D used at the beginning of the paper to illustrate the calculation of discrete frequencies was 
obtained in this manner. 
  
 A verb  to simulate the rolling of two dice is given by 
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 TwoDice=: [: <"1 [: Die ],2:  
and, for example, TwoDice 10 could be 
 ⁄ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒø 
 ≥6 4≥1 3≥6 2≥3 2≥4 6≥3 3≥5 3≥2 6≥1 4≥4 1≥ 
 ¿ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒŸ  
The sum of the faces occurring on each throw may be found by the expression 
 +/ EACH TwoDice 10  

which for another simulation could give the result 
 3 8 9 7 3 4 8 10 6 11  . 
The range for the sum occurring when two dice are thrown is given by  
 r=: >:>:i. 11  ,  
or alternatively by }. pos 12 where }. is the monadic verb behead which drops the first item of its 
argument, which has the value 
 2 3 4 5 6 7 8 9 10 11 12  . 
Therefore the transposed frequency table for the sums when two dice are thrown 100 times is given by 
 |: r frtab +/ EACH TwoDice 100 

and could have the value 
 2 3 4  5  6  7  8  9 10 11 12 

 2 5 6 10 16 20 15  8  9  7  2   .  
   
  Random numbers uniformly distributed between 0 and 1 may be generated by the verb 
 rand=: (? % ]) @ ($&1e9)  , 
and, for example, rand 5 is a five-item list which could have the value 
 0.903301 0.782992 0.746679 0.436426 0.00634169  , 
and rand 3 4 would be a three-by-four table of random numbers. 
 
 As an example of the use of uniformly distributed random variables we give the verb 
 coords=: [: rand ],2: 

which gives a specified number of random pairs of coordinates in a unit square lying in the first quadrant 
and with the lower left vertex at the origin. For example, coords 4  could have the value 
 0.897656 0.909208 

 0.0605643 0.904653 

 0.504523 0.516292 

 0.319033 0.986642  . 
This verb will be used at the end  of the section in an example for estimating the value of π by random 
means. 
 
 Pairs of standard normal random variables X1 and X2 may be generated by the following algorithm: 

  
 1. Generate two independent uniform random variables U1 and U2. 
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 2. Let V1 ← 2U1 - 1 and V2 ← 2U2 - 1. 
 3. Compute S ← V1

2 +V2
2.  

 4. If S ≥ 1, return to Step 1; otherwise, go to Step 5. 
 5. Compute  

 X1 ← V1√(-2lnS)/S 
          and  

 X2  ← V2√(-2lnS)/S 
 

Normally distributed random variables with arbitrary mean and standard deviation may be found very 
simply from standard normal random variables since if X has a standard normal distribution then µ + σX 
has a normal distribution with mean  µ and standard deviation σ.  
 
 Following are the verbs stdnrand and nrand for generating standard normal variables and normal 
variables with an arbitrary mean and standard deviation, respectively, together with some examples of 
their use. The latter verb is ambivalent and gives gives standard normal variables when used monadically 
and normal variables with a mean and standard deviation specified by the left argument when used 
dyadically. 
 stdnrand=: 3 : 0 

 r=. i. 0  

 while. y. > #r  do.  

      whilst. S >: 1 do.  

         V=: <:+:rand 2    

         S=: +/ *: V 

      end.  

 r=. r, V * %: -+:(^.%])S 

 end. 

 y.{.r 

 ) 

 nrand=: 3 : 0 

 0 1&nrand y. 

 : 

 y.{., ({.x.) + ({:x.) * stdnrand y. 

 ) 

 stdnrand 6 

_1.44617 1.11674 _0.701165 _1.31714 1.24598 0.745155 

   stdnrand 6 

_0.638977 0.196838 0.57735 _0.341106 _0.36003 1.50886 

   stdnrand 3 

_0.135576 _1.59651 _1.34934    

  nrand 5 

1.12516 _0.285921 0.728642 _0.492181 _2.37745 

   1 0.5 nrand 5 
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0.863109 0.0920709 0.83853 0.826178 1.15899 

   (am,sd) 1 0.5 nrand 200 

0.98917 0.522312 

   (am,sd) 1 0.5 nrand 200 

0.991909 0.510052 
 
 Random variables with the exponential distribution may be found by noting that if U is a uniformly 
distributed random variable, then X = -lnU has an exponential distribution with unit mean and µX has an 
exponential distribution with mean µ. The verb  
 exprand=: [ * [: -@^. [: rand ] 

gives exponentially distributed random numbers, and, for example, 1.5 exprand 3 could have the 
value 
 1.57809 1.77975 0.02637213 . 
 
 The area of the quadrant of a circle inscribed in a unit square is π/4. Therefore if a large number of 
points are selected at random within the square, the proportion lying within the inscribed quadrant may be 
used to estimate the value of π. It may be recalled that the verb 
 coords=: [: rand ],2:    
given earlier may be used to generate the random coordinates of points within a unit square with the lower 
left vertex at the origin, and that the four pairs of coordinates 
 0.897656 0.909208 

 0.0605643 0.904653 

 0.504523 0.516292 

 0.319033 0.986642 

were given as an example. The row sums of the squares of these values would give the squares of the 
distances of the points from the origin. With the above table this value would be the list 
 1.63245 0.822065 0.521101 1.07524 
indicating that the second and third points lie within the quadrant of the circle. Thus the verb 
 incircle=: [: +/ 1: >: [: +/"1 [: *: coords 
will give the number of points lying within the quadrant where the argument is the total number of 
random points selected. Five evaluations of the expression incircle 100 gave the values  
 75 79 80 83 79  
and thus estimates of π of 
 4 * 75 79 80 83 79 % 100 
or  
 3 3.16 3.2 3.32 3.16  . 
Finally the verb 
 PI=: 4: * incircle % ]  

will give an estimate of the value of π for an arbitrary number of points. Five evaluations of PI 100000 
gave 3.14112, 3.14596, 3.13996, 3.13556 and 3.13984. 
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Chi-square  
 If we have a list of observed frequencies obs and the corresponding list exp of expected frequencies 
which would occur according to some hypothesis, then the chi-square statistic which may be used to test 
this hypothesis is given by 
 Σ (obs - exp)2 / exp 
with a number of degrees of freedom equal to one less than the number of frequency classes. As a simple 
example Hoel (1966) cites a breeding experiment that gave 120 magenta flowers with a green stigma, 48 
magenta flowers with a red stigma, 36 red flowers with a green stigma, and 13 red flowers with a red 
stigma. Mendelian theory predicted that these flowers should be in the ratios 9:3:3:1. Therefore, the 
observed frequencies are  
 obs=: 120 48 36 13 

and the expected frequencies, which may be calculated from the expression 
 217 * 9 3 3 1 % 16  , 
are  
 exp=. 122.063 40.6875 40.6875 13.5625  . 
The value of chi-square is thus 
 +/ (*: obs - exp) % exp 
which is 1.91244. Since 3 CSDISTN 1.91 is 0.408, there is a probability of approximately 0.6 of 
obtaining a larger value of chi-square if the hypothesis is true. Therefore there is no reason to doubt that 
Mendelian theory is applicable here. 
 
 The dyadic verb 
 chisq=: [: +/ ([: *: -) % [ 

where the left and right arguments give the expected and observed frequencies, respectively, may be used 
to find the value of chi-square. With the data of the previous paragraph we have that exp chisq obs is 
1.91244. However, the form of the verb we shall use is 
 chisq=: [: +/ [: , ([: *: -) % [ 

which will accommodate both one- and two-way frequency distributions. We note the monadic verb 
ravel ,  which converts its argument to a list, and, for example, if  W is the table 
 62.3  58.5  44.6  50.3 

 63.4  50.4  45.0  46.7 

 64.5  46.1  62.6  50.3 

 introduced in a previous section, then  ,W is the list 
 62.3 58.5 44.6 50.3 63.4 50.4 45 46.7 64.5 46.1 62.6 50.3 
with the items of W in row order. 
 
 As a second example let us use the expression 
 obs =. (i. 10) fr ? 200 $ 10  

to give a frequency count of  200 random digits between 0 and 9. One example of its use gave the list 
 23 21 24 18 23 19 24 19 15 14  . 
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Since the expected frequencies on the hypothesis of a random sequence of digits would all be equal to 20, 
the value of chi-square is 20 chisq obs which is 5.9. Since 9 CSDISTN 2.8 is 0.25, we may 
conclude that the 200 digits are from a uniform distribution.  
 
 The chi-square test may be used to test for independence in the factors of classification in a two-way 
contingency table. The expected frequencies on the assumption of independence are given by 
expij = ricj / N, where ri and cj are the sums of the ith row and jth column, respectively, and N is the total 
frequency. If the observed frequencies are obsij, then the test statistic is  
 Σ(obsij - expij)2/expij  
which has an approximate chi-square distribution with (r-1)(c-1) degrees of freedom, where r and c are 
the number of rows and columns in the table. The expected frequencies are given by the monadic verb 
 expfr=: (+/"1 */ +/) % [: +/ , 
whose argument is the table of observed frequencies. For sample data we shall use Tab34 with the value 
 18 29 70 115 
 17 28 30  41 

 11 10 11  20  
from Hoel (1966) in which 400 persons are classified both by level of education and marriage adjustment 
score. The expected frequencies are given by  
 expfr Tab34  
which has the value 
 26.68 38.86 64.38 102.08 

 13.34 19.43 32.19  51.04 

   5.98  8.71 14.43  22.88  , 
and the value of chi-square is  
 (expfr Tab34) chisq Tab34 
which is 19.94. Since 6 CSDISTN 19.94 is 0.997, we may conclude that the two variables of 
classification are related. 
  
 If the frequencies are small in a two-by-two table, then it has been suggested that the exact 
probabilities be calculated for the given table and for all other tables less likely to occur if the two 
variables of classification are independent.  For example, with the three tables given by 
 T22=: (>2 5;3 3);(>1 6;4 2);>0 7;5 1 
whose value is 
 ⁄ƒƒƒ¬ƒƒƒ¬ƒƒƒø 
 ≥2 5≥1 6≥0 7≥ 
 ≥3 3≥4 2≥5 1≥ 
 ¿ƒƒƒ¡ƒƒƒ¡ƒƒƒŸ 

the first item is the given table and the second and third items represent the less likely tables on the 
assumption that the two criteria of classification are independent. For any table with frequencies a and b 
in the first row and c and d in the second row the associated probability may be shown to be 
 r1!r2!c1!c2! /a!b!c!d!N!   
which may be rearranged as the hypergeometric distribution corresponding to c1 red balls, c2 black balls 
and a sample size of r1. For example, the probability for the first table above is given by 5 8 7 hg 2 
which is 0.32634. Therefore we may define the monadic verb 
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 chisq22=: (+/ , [:{.(+/"1)) hg [: {. , 

whose argument is a two-by-two table and whose result is the corresponding probability. The monadic 
verb head {. gives the first item of its argument, and, for example, {. 1 2 3 4 is 1. The probabilities 
for the above tables are given by  
 chisq22 EACH T22 

with the value  
 0.32634 0.08159 0.00466  , 
and since the sum is 0.41259 we may assume that the two criteria of classification are independent. 
 
 As a final example of the chi-square test let us consider the simulation in the previous section in 
which we tossed two dice 100 times and tabulated the sums occurring and obtained the following 
frequency table with the sums in the first row and the observed frequencies in the second: 
 2 3 4  5  6  7  8  9 10 11 12 

 2 5 6 10 16 20 15  8  9  7  2  
We would like to test if these results could be reasonably obtained with unbiased dice. We represent the 
observed frequencies as 
 obs=: 2 5 6 10 16 20 15 8 9 7 2 
and then calculate the expected frequencies exp on the assumption that the dice are unbiased.. 
 
 All possible sums that can be obtained when two dice are thrown are given in the table  
   +/~ p=: 1 2 3 4 5 6 
which has the value 
 2 3 4  5  6  7 

 3 4 5  6  7  8 

 4 5 6  7  8  9 

 5 6 7  8  9 10 

 6 7 8  9 10 11 

 7 8 9 10 11 12  . 
Equal values for the sums fall along the diagonals and may be grouped by the expression </.+/~p, 
where /. is the monadic verb oblique, to give the list 
 ⁄ƒ¬ƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒ¬ƒƒø 
 ≥2≥3 3≥4 4 4≥5 5 5 5≥6 6 6 6 6≥7 7 7 7 7 7≥8 8 8 8 8≥9 9 9 9≥10 10 10≥11 11≥12≥ 
 ¿ƒ¡ƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒ¡ƒƒŸ 
The frequencies for the various sums are given by # EACH </.+/~p with the value 
 1 2 3 4 5 6 5 4 3 2 1  , 
and the corresponding probabilities by 
 pr=: 36 %~ # EACH </.+/~p 

which rounded to three decimal places are  
 0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028  . 
Therefore, the expected frequencies are equal to  
   exp=. 100 * pr 

which rounded to one decimal place are 
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 2.8  5.6  8.3 11.1 13.9 16.7 13.9 11.1  8.3  5.6  2.8  . 
The value of chi-square is given by exp chisq obs and is equal to 3.599, and since   
 10 CSDISTN 3.599 
is 0.0363705, we may conclude that the simulated dice were unbiased. 
 

            
Nonparametric methods 
 Nonparametric tests may be used in place of the more standard tests when the normality assumptions 
required by these latter tests are not satisfied. Since many of the calculations required in nonparametric 
tests require the ranks of the observations rather than the observations themselves, we shall first give 
verbs for calculating ranks, then verbs for calculating the rank correlation coefficient and for finding the 
number of runs in a sequence of observations. We shall begin our discussion by considering sorting the 
items in a list. 
 
 Sorting in non-decreasing order may be accomplished by the monadic verb grade (up) and the dyadic 
verb sort, both represented by /:. The monadic verb grades its argument giving the permutation which 
would sort the items of the argument in non-decreasing order. For example, for the list 
 v=: 4.5 2 6.1 3.7   
the expression /: v is the list 1 3 0 2 giving the indices of the items of v beginning with the minimum 
and proceeding to the maximum. The dyadic verb sorts the left argument argument in the order specified 
by the grade of its right argument so that v/:v gives the list 2 3.7 4.5 6.1 of the items of v in non-
decreasing order. This last expression may be written more simply as /:~v using the monadic adverb 
reflex which we have already seen. Thus we may define the utility verb 
 sort=: /:~ 
and sort v is 2 3.7 4.5 6.1.  
 
 The monadic verbs grade (down) and sort, both represented by \:, are similar and sort in non-
ascending order so that \:v is 2 0 3 1 and   \:~v is 6.1 4.5 3.7 2. 
  
 If we apply the grade verb twice, e.g., /:/:v which gives 2 0 3 1, we shall obtain in zero-origin 
indexing the ranks of the items of v indicating that the first item is the third smallest, the second item is 
the smallest, the third is the largest, and the fourth item is the second smallest. The expression >:/:/:v 
gives 3 1 4 2, the ranks in the more conventional one-origin indexing. To conveniently define a verb 
for unadjusted ranks we introduce the conjunction power ^: which repeats its verb left argument a 
number of times specified by the right argument, and, for example, (*:^:2) 5 is equivalent to 
*: *: 5 or 625. Thus we may define the verb 
 uranks=: >: @ /:^:2 

for the ranks unadjusted for ties, and uranks v is 3 1 4 2.   
 
 If there are ties in the observations, the ranks of equal observations are replaced by the arithmetic 
mean of their ranks neglecting ties. For example, for the list 
 v1=: 4.5 2 4.5 6.1 2 2 3.7  , 
the ranks unadjusted for ties are 
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 5 1 6 7 2 3 4 

while the adjusted ranks are 
 5.5 2 5.5 7 2 2 4  . 
The adjusted ranks of the first and third observations are equal to 5.5, the mean of the unadjusted ranks 5 
and 6, and those for the second, fifth and sixth observations are equal to 2 which is the mean of 1, 2 
and 3.  
 
 A verb which gives the ranks adjusted for any ties follows quite readily from the symmetric table 
given by the expression =/~ with a list argument. For example, since v1 is the list 
 4.5 2 4.5 6.1 2 2 3.7  ,  
the table =/~ v1 has the value  
 1 0 1 0 0 0 0 

 0 1 0 0 1 1 0 

 1 0 1 0 0 0 0 

 0 0 0 1 0 0 0 

 0 1 0 0 1 1 0 

 0 1 0 0 1 1 0 

 0 0 0 0 0 0 1  , 
and the 1s in any column give the positions of equal items in v1. For example, the 1s in the first and third 
rows of the first column show that the first and third items of v1 are equal. The column sums are given by 
+/=/~v1 and are equal to 
 2 3 2 1 3 3 1   
and give the number of occurrences of each item in v1. Also the expression 
 (=/~ mp uranks) v1 

which is equal to 
 11 6 11 7 6 6 4 
gives the corresponding sums of the unadjusted ranks. Therefore, the verb 
 ranks=: (=/~ mp uranks) % [: +/ =/~   

gives the ranks adjusted for ties, and ranks v1 is 
 5.5 2 5.5 7 2 2 4  . 
 
 Often, for example with class marks, ranks are given in the inverse order to that given above so that 
the largest item in a list has the smallest rank of 1. Inverse ranks are given by the verb 
 invranks=: [: ranks -  , 
and, for example, invranks v is 2 4 1 3. 
 
 Spearman’s rank correlation coefficient  is the correlation coefficient computed from the ranks of the 
observations. Rather than give the customary expression involving the ranks, we shall give the verb 
 rcor=: cor&ranks 

which calculates the rank correlation coefficient from the original observations. If we use the two lists 
 French=: 83 27 42 51 53 44 47 55 61 33 
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and 
 German=: 74 22 49 54 48 47 55 61 59 29  
which give the marks of ten students in these two subjects from Sprent (1981), we find that 
 French rcor German 
has the value 0.879, rounded to three decimal places, while the correlation coefficient found from the 
original marks by 
 French cor German 

is equal to 0.925. 
 
 Before considering runs, we shall introduce two adverbs, the monadic prefix and the dyadic infix  
both represented by \, as we require the dyadic form in our discussion. The monadic prefix applies its 
verb left argument to each of the prefixes of its noun right argument, i.e.,  to the first item, the first two 
items, the first three items, etc. For example, since pos 5 is the list of the first 5 positive integers, the 
prefixes are given by <\pos 5 and are 
 ⁄ƒ¬ƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒø 
 ≥1≥1 2≥1 2 3≥1 2 3 4≥1 2 3 4 5≥ 
 ¿ƒ¡ƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒŸ 

and +/\ pos 5 gives the cumulative sums 
 1 3 6 10 15 
and   */\ pos 5 the cumulative products or factorials 
 1 2 6 24 120  . 
The dyadic infix applies its verb argument to infixes of its right noun argument, overlapping infixes if the 
left noun argument is non-negative and non-overlapping of it is negative, as illustrated by the following 
examples: 
 2 <\ pos 5 
⁄ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒø 
≥1 2≥2 3≥3 4≥4 5≥ 
¿ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒŸ 
   2 +/\ pos 5 
3 5 7 9 

   _2 <\ pos 5 
⁄ƒƒƒ¬ƒƒƒ¬ƒø 
≥1 2≥3 4≥5≥ 
¿ƒƒƒ¡ƒƒƒ¡ƒŸ 
   _2 +/\ pos 5 
3 7 5 

 

 Now we may consider runs in a list of observations which are useful in determing the randomness of 
a sequence of observations. A run is defined as a sequence of consecutive identical observations preceded 
and followed by a different observation, or by no observation if the sequence begins or ends the list. For 
example,  the list 
 HeadsTails=: 'HHTHHHHTHHHTHHH' 

contains the seven runs 'HH', 'T', 'HHHH', 'T', 'HHH', 'T' and 'HH'. The expression 
2 <\HeadsTails is the list 
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 ⁄ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒ¬ƒƒø 
 ≥HH≥HT≥TH≥HH≥HH≥HH≥HT≥TH≥HH≥HH≥HT≥TH≥HH≥HH≥ 
 ¿ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒ¡ƒƒŸ 

of overlapping pairs, and 2 ~:/\HeadsTails, 
where ~: is the dyadic verb not-equal, is the list 
 0 1 1 0 0 0 1 1 0 0 1 1 0 0 

where the 1s indicate the positions of  pairs which are not the same. Thus we may be define the monadic 
verb 
 uneq=: 2: (~:/\) ] 

whose argument is an arbitrary list and whose result is a list of 0s and 1s indicating equal and unequal 
overlapping pairs of items, respectively. Since the number of runs is one more than the number of unequal 
overlapping pairs, we may define the verb 
 runs=: [: >: [: +/ uneq 
whose argument is an arbitrary list and whose result is the number of runs, and, for example, 
runs HeadsTails is 7.  
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Further examples 
 
 
Common mean 
 A mean which is used in mathematical analysis in the study of elliptic functions, although it does not 
appear to have statistical applications, is the "common mean" or "arithmetic-geometric mean". It is 
defined as the limiting value of the arithmetic and geometric means and may be calculated as follows: 
Find the arithmetic and geometric means of the observations, then find the arithmetic and geometric 
means of these two means, and then the arithmetic and geometric means of these two means, ... 
continuing until the two means are equal. This common value is defined to be the common mean of the 
original observations. With the four-item list  
 w=: 62.3 58.5 44.6 50.3  

used previously we have the following example: 
 (am,gm) w 

53.925 53.4733 

 (am,gm) (am,gm) w 

53.6991 53.6987 

 (am,gm) (am,gm) (am,gm) w 

53.6989 53.6989  

The common mean of w is thus 53.6989. 
 
 To conveniently define the common mean we use the conjunction power ^:. We note that an infinite 
power  gives the limiting value of the application of the verb, and we have that (*: ^:_) 5 is _  and 
(%: ^:_) 5 is 1.  
 
 The above example for the calculation of the common mean may be given using the power 
conjunction as follows: 
 (am,gm) ^:0 w 

62.3 58.5 44.6 50.3  

 (am,gm) ^:1 w 

53.925 53.4733 

 (am,gm) ^:2 w 

53.6991 53.6987 

 (am,gm) ^:3 w 

53.6989 53.6989 

These calculations may be given more concisely as 
 (am,gm) ^:_ w  
which is 53.6989 53.6989 as before. Finally using the monadic verb head {. which gives the first 
item of its list argument, we have that {. (am,gm) ^:_ w is 53.6989. Therefore, a verb for the 
common mean is 
 cm=: [: {. (am,gm)^:_ 
and cm w is 53.6989. 
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 One constant which has been given along with such constants as Archimedes constant π and Euler's 
constant e is the "ubiquitous constant" u defined as the common mean of 1 and 1/√ 2. In J this is given by 
cm 1, %%:2 which is equal to 0.847213.  Finally the common mean is used in an iterative algorithm 
with quadratic convergence for the calculation of π in which the number of significant digits doubles on 
each iteration. 
 
 
Coupon collector's problem 
 The coupon collector's problem is concerned with sampling with replacement from a finite population 
until all of the items are represented in the sample. Such a sampling procedure may serve as a model for 
collecting a complete set of prizes included, one prize in a package, in products such as breakfast cereal. 
If there are n different prizes, the problem is equivalent to sampling with replacement from the first n 
positive integers until all n integers are represented in the sample.   
 
 The expected sample size for n coupons (or integers) may be shown to be "n times the sum of the 
reciprocals of the first n positive integers". If there are five prizes, say, a J expression for the expected 
sample size is 
  5 * +/ % 1 2 3 4 5  , 
or equivalently 
 5 * +/ % pos 5  , 
which is equal to 11.4167.  Therefore we may define the verb 
 cc=: * [: +/ [: % pos  , 
and, for example, cc 5 is 11.4167, cc 10 is 29.2897 and cc 26 is 100.215. We note that the verb 
cc consists of the fork [: % pos followed by the fork [: +/ ([: % pos) and finally by the hook 
* ([: +/ [: % pos). 
 
 An explicit verb for simulating the coupon collector's problem is the following: 
 ccsize=: 3 : 0 

 : 

 m=. x. 

 n=. y. 

 r=. i. 0 

 while. m > #r do. 

    CCsample=: i. 0 

    while. n > # ~. CCsample do. 

       CCsample=: CCsample, >:?n 

    end. 

    r=. r, #CCsample 

 end. 

 ) 

We note that the variables m, n and r are local to the definition, whereas the value CCsample which 
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gives the sample values for the last simulation is global. The expression 10 ccsize 5 gives the sample 
sizes for 10 simulations with 5 coupons, and could have the value  
 15 18 6 9 10 19 6 17 30 28 

with  CCsample being the the list  
 3 3 5 3 4 5 4 5 4 4 1 5 3 3 1 4 3 4 4 1 5 5 5 3 1 3 5 2   
of 28 sample values of the last simulation. The sample for a single simulation may be obtained using a 
left argument of 1, and, for example, 1 ccsize 5 could give the result 12 with a value for CCsample 
of 
 3 2 3 5 3 3 5 2 2 5 1 4  . 
Finally, the expression 
 |: nubfrtab sort S=: 100 ccsize 5 

gives a transposed nub frequency table of the sample sizes for 100 simulations for 5 coupons with the 
ungrouped and unsorted sample sizes in S. One value of this expression is 
 5 6  7  8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 38 

 6 5 11 14 8 11  7  7  4  5  5  6  1  2  3  1  2  1  1 

For this simulation we have am S equal to 11.97 where the expected sample size is approximately 11.4. 
 
 A Windows form for the coupon collector's problem is given in Figure 4.2 of Appendix 4. 
 
 
German army corps example 
 A classic example of the Poisson distribution given in many texts including Weaver (1963) is data 
giving the number of deaths which occurred from 1875 to 1894 in various German army corps due to 
kicks from horses. We shall construct a frequency distribution of the number of deaths, calculate the 
frequencies expected if the deaths are distributed in a Poisson distribution with the same mean, and finally 
use the chi-square distribution to compare the observed and expected frequencies. 
 
 The data are given as the list H which may be displayed conveniently by the expression 7 40$H as  
 0 1 1 1 0 2 0 3 1 0 0 0 0 2 0 2 0 0 1 1 0 0 2 1 1 0 0 2 0 0 0 0 0 1 1 1 2 0 2 0 

 0 0 1 0 1 2 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 2 1 0 0 1 0 

 0 1 0 1 1 1 1 1 1 0 0 0 1 0 2 0 0 1 2 0 1 1 3 1 1 1 0 3 0 0 1 0 1 0 0 0 1 0 1 1 

 0 0 2 0 0 2 1 0 2 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 2 1 1 1 0 

 2 1 1 0 1 2 0 1 0 0 0 0 1 1 0 1 0 2 0 2 0 0 0 0 2 1 3 0 1 1 0 0 0 0 2 4 0 1 3 0 

 1 1 1 1 2 1 3 1 3 1 1 1 2 1 1 3 0 4 0 1 0 3 2 1 0 2 1 1 0 0 0 1 0 0 0 0 0 1 0 1 

 1 0 0 0 2 2 0 0 0 0 0 1 1 1 0 2 0 3 1 0 0 0 0 2 0 2 0 0 1 1 0 0 2 1 1 0 0 2 0 0  . 
The number of observations is #H or 280, the maximum number of deaths is >./H which is 4, and the 
frequencies of 0 to 5 deaths  are 
 0 1 2 3 4 5 fr H 
which is   
 144 91 32 11 2 0 .  
The average number of deaths is  am H or 0.7. An estimate of the Poisson probabilities for 0 to 5 deaths 
is given by 0.7 poisson i. 6 which is 
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 0.49659 0.34761 0.12166 0.02839 0.00497 0.00070  .  
The expected frequencies are 280 times these values which, rounded to one decimal place, are 
  139.0 97.3 34.1 7.9 1.4 0.2  . 
If we let the observed and estimated frequencies be represented by the lists obs and exp, respectively, 
then these calculations may be conveniently summarized by the table 
 5.0 5.0 8.1": (i. 6),.obs,.exp 

which has the value 
 0  144   139.0 

 1   91    97.3 

 2   32    34.1 

 3   11     7.9 

 4    2     1.4 

 5    0     0.2  .  
 

 Since the last two frequencies are small, we shall group them and have the lists 
 obs1=: 144 91 32 11 2 
and 
 exp1=: 139 97.3 34.1 7.9 1.6 
for observed and expected frequencies. The value of chi-square  is exp1 chisq obs1 which is  2.03 
so there is no significant departure of the observed data from the Poisson distribution. 
  
 
Central limit theorem 
 A very important theorem in statistics is the Central Limit Theorem which states that the sample 
arithmetic mean, based on a random sample size of n from a population with mean µ and standard 
deviation σ, will possess an approximate normal distribution with mean µ and standard deviation σ/√n 
with the approximation becoming increasingly good as n increases. This theorem is of great importance in 
estimation procedures and tests of significance. In this section we shall  use some of the J verbs we have 
introduced previously to simulate repeated sampling from a given theoretical population and to examine 
the distribution of the resulting sample means. 
 
 In this example, taken from Hoel (1966), the population random variable x with the range 1, 2, ... , 6 
has a probability density p(x) given by the following table: 
   x    1    2    3    4    5    6       
 p(x)    0.25  0.25  0.20  0.15  0.10  0.05 
The mean and standard deviation of this distribution may be found to be µ = 2.75 and σ = 1.48, 
respectively. Now since the samples are of size 10, the sample mean will be distributed with mean 2.75 
and standard deviation 1.48/√10 = 0.47. The simulation in the text consisted of 100 samples each of size 
10 found by selecting a total of 1000 two-digit random numbers from a table of random numbers. A 
random number from 00 to 24 represented a value of the random variable of 1, a number from 25 to 49 
represented a value of 2, etc. The 1000 values were arranged in groups of 10, the sample mean of each 
group calculated, the distribution of the 100 sample means tabulated, and the mean and standard deviation 
of the sample means calculated. The distribution of the means was seen to be a reasonable approximation 
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to the normal distribution with a mean and standard deviation close to those values predicted by theory. 
 
 The probabilities in the distribution constructed by Hoel may be represented by the list 
 p=: 0.25 0.25 0.20 0.15 0.10 0.05 

and the range of the random variable by 
   x=: 1 2 3 4 5 6  . 
The population mean is thus 
 mu=: +/x * p 

which has the value 2.75 and the population standard deviation is 
 sigma=: %: +/(+/p*x^2) - mu^2       

which is 1.47902. Therefore, the sample mean has a distribution with mean 2.75 and standard 
deviation 
 stdev=: sigma % %: 10  

which is 0.467707. 
 
 In the simulation the verb  
 Hdistn=: [: >: [: _1 24 49 69 84 94 99&io ?@$&100 

gives sample values of a random variable distributed according to the required distribution. The 
expression Hdistn 5 could have the value 
 1 4 2 3 1  ,  
and Hdistn 5 8 is a five-by-eight table whose items could be 
 1 4 2 3 1 1 3 3 

 5 2 3 4 1 1 3 3 

 1 2 1 2 3 3 5 4 

 3 1 3 2 4 5 4 2 

 1 4 2 3 4 6 2 1  . 
The expression am Hdistn 10 12 gives the arithmetic means of 12 samples of 10 items each and 
could have the value 
   3 2.8 2.8 2.3 2.4 3.3 2.4 2.8 2.9 2.9 2.7 3  . 
  
 The variable 
 M1=: am Hdistn 10 100                      

gives the means of 100 samples of 10 items each. The expression 
 (<./,>./) M1  
gives the minimum and maximum values of 1.6 and 4, respectively. The class limits for a frequency 
classification are given by the arithmetic progression 
 ap 1.5 0.2 14 

with values 
 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1  . 
The transposed grouped frequency table is given by 
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 t1=: |: (ap 1.5 0.2 14) grfrtab M1 
which has the value 
 1.6 1.8 2 2.2 2.4 2.6 2.8  3 3.2 3.4 3.6 3.8 4 

   1   2 9   6  13  21  15 12   8   8   3   1 1  . 
Let a second simulation be given by  
 M2=: am Hdistn 10 100 
where (<./,>./)M2 is 1.6 3.9. Then a second frequency table is given by 
 t2=: |: (ap 1.5 0.2 14) grfrtab M2 
which is    
 1.6 1.8 2 2.2 2.4 2.6 2.8  3 3.2 3.4 3.6 3.8 4 

     2   0 6   9  10  17  16 18   8   9   2   3 0 

Barcharts for the two simulations are given by 
 ((0&{ barchart 1&{) t1);(0&{ barchart 1&{) t2  , 
where the dyadic verb take { is used to give the first and second rows of the transposed tables,.and are as 
follows: 
 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø 
 ≥1.6 *                    ≥1.6 **                ≥ 
 ≥1.8 **                   ≥1.8                   ≥ 
 ≥  2 *********            ≥  2 ******            ≥ 
 ≥2.2 ******               ≥2.2 *********         ≥ 
 ≥2.4 *************        ≥2.4 **********        ≥ 
 ≥2.6 *********************≥2.6 ***************** ≥ 
 ≥2.8 ***************      ≥2.8 ****************  ≥ 
 ≥  3 ************         ≥  3 ******************≥ 
 ≥3.2 ********             ≥3.2 ********          ≥ 
 ≥3.4 ********             ≥3.4 *********         ≥ 
 ≥3.6 ***                  ≥3.6 **                ≥ 
 ≥3.8 *                    ≥3.8 ***               ≥ 
 ≥  4 *                    ≥  4                   ≥ 
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ  
    
 

Throwing dice 
  In this section we shall give some further examples of the simulation of dice throwing and refer to 
two classical experiments in throwing dice. To begin we shall generalize the dice-throwing simulation to 
accommodate any number of dice with an arbitrary number of faces thrown any number of times with the  
dyadic verb 
 PolyDice=:  [: <"1 [: |: [: >: [: ? ] $ [ 
where the left argument gives the number of faces and the right argument is a two-item list giving the 
number of dice and the number of throws. Some examples of it use are the following: 
 6 PolyDice 1 12 
⁄ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒø 
≥4≥2≥3≥4≥6≥1≥1≥4≥4≥5≥4≥1≥ 
¿ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒŸ 
 4 PolyDice 3 8 
⁄ƒƒƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒø 
≥2 1 4≥2 3 4≥1 4 2≥3 1 3≥2 1 3≥2 3 4≥1 3 4≥4 3 4≥ 
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¿ƒƒƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒŸ 
 8 PolyDice 2 5 
⁄ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒ¬ƒƒƒø 
≥5 8≥5 1≥4 4≥5 7≥8 4≥ 
¿ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒ¡ƒƒƒŸ 
  20 PolyDice 3 6 
⁄ƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒø 
≥8 6 4≥10 8 20≥20 10 2≥11 12 8≥9 15 5≥15 4 13≥ 
¿ƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒŸ 

 
 With real dice the number of different faces must correspond to one of the five regular polyhedra  
with four, six, eight, twelve or twenty faces, but we may simulate the throwing of any die either real or 
imaginary. For example, the expression 
 2 PolyDice 1 20 
which could have the result 
 ⁄ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒ¬ƒø 
 ≥2≥2≥1≥1≥2≥2≥1≥1≥2≥1≥2≥1≥1≥1≥1≥2≥1≥2≥2≥1≥ 
 ¿ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒ¡ƒŸ   
would represent the simulation of throwing one two-sided die  20 times. It could also represent the results 
of tossing a coin with the 1s and 2s corresponding to heads and tails, respectively. Furthermore, the 
expression 
  1 2  fr ; 2 PolyDice 1 20 
would result in a two-item list giving the number of heads and tails occurring in the simulation. The 
monadic verb raze ; is used to convert the boxed list of the results to an unboxed list. 
 
 The English biologist W. F. R. Weldon (1860 - 1906) performed several dice-throwing experiments 
to illustrate his statistical arguments.  In one he tabulated the results of rolling twelve dice 4096 times 
counting as a success the occurrence of 4, 5 or 6. The following shows the use of J to simulate this 
example: 
 

NB. Roll 4 dice 8 times  
 r=: 6 PolyDice 4 8 

 r 
⁄ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒø 
≥6 4 5 4≥2 5 6 6≥5 4 5 3≥2 4 4 4≥6 2 5 1≥3 1 3 1≥6 6 2 2≥3 3 2 4≥ 
¿ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒŸ 
NB. Occurrences of 4, 5 and 6 marked with 1s  
 (e.&4 5 6 each) r 
⁄ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒø 
≥1 1 1 1≥0 1 1 1≥1 1 1 0≥0 1 1 1≥1 0 1 0≥0 0 0 0≥1 1 0 0≥0 0 0 1≥ 
¿ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒŸ 
NB. Number of 4s, 5s and 6s on each roll 

 +/ EACH (e.&4 5 6 each) r 

4 3 3 3 2 0 2 1 

NB. Frequencies of 4s, 5s and 6s 

 0 1 2 3 4 5 fr +/ EACH (e.&4 5 6 each) r 

1 1 2 3 1 0 
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NB. Range of frequencies  

 i. 13 

0 1 2 3 4 5 6 7 8 9 10 11 12 

NB. Simulation of Weldon's experiment 
 (i. 13) fr +/ EACH (e.&4 5 6 each) 6 PolyDice 12 4096 

1 9 74 202 493 768 987 775 504 203 68 8 4 

  

 Another set of dice data which apparently is not as well known as Weldon's was generated by a Swiss 
scientist Rudolf Wolf who rolled a die 100 000 times and obtained the results 16 632, 17 700, 15 183, 
14 393, 17 707 and 18 385 for the frequencies of occurrence of 1, 2, 3, 4, 5 and 6, respectively. This 
experiment may be simulated very simply by the expression 
 1 2 3 4 5 6 fr ,>6 PolyDice 1 100000  , 
one execution of which gave the list 
 16730 16597 16509 16875 16551 16738  . 
 
 The expected frequencies for 100000 throws of an unbiased die are 100000%6 or 16666.7 so the 
value of chi-square for Wolf's data is 
 (100000%6) chisq 16632 17700 15183 14393 17707 18385 
or 748.486. Since 5 CSDISTN 748.5 is approximately 0.031, we may conclude that the die used was 
certainly biased. On the other hand the value of chi-square for the simulated data is approximately 0.67 
which is consistent with the hypothesis that the die is unbiased. In discussing Wolf's data Epstein (1977) 
states that it is reasonable to assume that a die of poor quality such as would have been manufactured in 
the nineteenth century would have developed a bias when rolled a large number of times. He then remarks 
that "the dice employed by major gambling casinos are generally machined to tolerances of 1/2000 inch, 
are of hard homogeneous material, and are rolled only a few hundred times on a soft green felt surface 
before being retired".  
 
 To simplify the simulation of throwing dice we give the dyadic verb Dice where the left argument 
gives the number of faces and the right argument gives the number of dice and the number of throws: 
 Dice=: 3 : 0 

 : 

 Faces=. x. 

 'Dice Throws'=. y. 

 R=: +/ EACH Faces PolyDice Dice, Throws 

 Range=: Dice }. i. >: Faces * Dice 

 Nub=: sort ~. R 

 RangeFreq=: Range fr R 

 empty NubFreq=: Nub fr R 

 ) 
The results are all given by global variables and represent the sums of the faces occurring and the range, 
nub and corresponding frequencies. We note the verb empty which causes its verb argument to give an 
empty result which will be convenient when we use Dice in a Windows form. The expression 4 Dice 2 
10 corresponds to throwing 2 four-sided dice 10 times and for one simulation gave the following results: 
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 R 

5 5 6 7 4 6 2 8 5 7 

 Range 

2 3 4 5 6 7 8 

 Nub 

2 4 5 6 7 8 

 RangeFreq 

1 0 1 3 2 2 1 

 NubFreq 

1 1 3 2 2 1 

    

 Figure 4.3 in Appendix 4 shows a Windows form for throwing one, two or three regular polyhedral 
dice either 10, 50, 100 or 200 times. The results give both the tabular and barchart representations of 
either the range or nub frequencies. 
 
 
A few more numbers 
  In this last section we shall discuss three topics which have not been considered in previous 
sections: number systems, arithmetic with rational numbers, and extended precision integer arithmetic. 
First of all, however, we shall mention two primitive J verbs related to prime numbers. 
 
 The monadic verb primes p: with an integer argument n gives the nth prime. For example, p: 4 is 
11 and p: i. 10 is 2 3 5 7 11 13 17 19 23 29. The inverse of p: is the number of primes 
less than the argument, and p:^:_1 i. 15 is 
 0 0 0 1 2 2 3 3 4 4 4 4 5 5 6  . 
The monadic verb prime factors q: gives the prime factors of its argument, and, for example,  q: 2772  
is  
 2 2 3 3 7 11 
so that  
 */2 2 3 3 7 11 
is equal to 2772. The dyadic verb prime exponents, also represented by q:, gives the exponents in the 
prime decomposition of the right argument to the number of factors given by the left argument. For 
example, 7 q: 2772 is 2 2 0 1 1 0 0 so that  
 */2 3 5 7 11 13 17 ^ 2 2 0 1 1 0 0   
is 2772. An infinite left argument gives just a sufficient number of exponents so that _ q: 2772 is 
2 2 0 1 1. 
 
 Number systems to arbitrary bases may be handled by the base verb #. for conversion from an 
arbitrary base to decimal and the antibase verb #: for conversion from decimal to an arbitrary base. The 
monadic forms of these verbs give conversion between binary and decimal, and the dyadic forms give 
conversion between a base specified by the left argument and decimal. The following simple examples 
illustrate their use: 
 #. 1 1 1 0 1 
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29 

 #: 29 

1 1 1 0 1 

 2 #. 1 1 1 0 1 

29 

 8 #. 3 7 5 

253 

 16 #. 10 6 15 

2671 

 2 2 2 2 2 #: 29 

1 1 1 0 1 

 2 2 2 #: 29 

1 0 1 

 8 8 8 #: 253 

3 7 5 

 16 16 16 #: 2671 

10 6 15 
 
 A verb of considerable usefulness is 
 tt=: [: #: [: i. 2: ^ ] 
which gives table, called a truth table, of all possible arguments of a logical function for the number of 
variables specified by its argument. For example, the transposed truth table for three variables is given by 
the expression |: tt 3 which has the value 
 0 0 0 0 1 1 1 1 

 0 0 1 1 0 0 1 1 

 0 1 0 1 0 1 0 1  . 
An ordered truth table, which is similar but has the rows sorted by the number of 1s, is given by 
 ott=: [: (/: +/"1) tt  , 
and |: ott 3  is 
 0 0 0 1 0 1 1 1 

 0 0 1 0 1 0 1 1 

 0 1 0 0 1 1 0 1  . 
The expression 
 ,( }. ott 3) # 'ABC' 

gives the labels 
 C  B  A  BC AC AB ABC 

for all the main effects and interactions in a three-factor factorial experiment. If we use the monadic verb 
reverse |. the expression 
 ,(|."1 }. ott 3) # 'ABC'   
gives the labels in the more familiar order 
 A  B  C  AB AC BC ABC  . 
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 The base specified by the left argument may be mixed, an especially useful mixed base being 
24 60 60 for conversion between hours, minutes and seconds and the total number of seconds. For 
example, the expression 
 24 60 60 #. 5 25 10 
is 19510 which is the number of seconds in 5 hours, 25 minutes and 10 seconds, and, conversely, 
 24 60 60 #: 19510 
is 5 25 10. Another example is  
 365 24 60 60 #. 1 0 0 0   
which is 86400, the number of seconds in one day.  
 
 As an example of the use a mixed-base number system suppose we have timed an event that began at 
5:25:10 o'clock in the afternoon and ended about two hours later at 7:15:8 seconds, and we wish to find 
the elapsed time in hours, minutes and seconds. If 
 T=: 7 15  8;  5 25 10  , 
then the required elapsed time is given by the expression 
 24 60 60&#:-/24 60 60&#. EACH T 

which has the value 1 49 58 representing 1 hour, 49 minutes and 58 seconds. 
 
 As we have used the derived verb -/ in the last paragraph to find the elapsed time in seconds, this 
may be an appropriate occasion to examine the verb with an argument with an arbitrary number of items 
For the list 
 p=: 1 2 3 4  5 6 

of the first 6 postive integers, we have that +/p is the sum 21 and */p 5 is the product 720. However, 
-/p is _3 which may be puzzling. To understand this result let us recall the precedence rule for verbs in 
J. In Appendix 1 we state that precedence is determined by parentheses, and in their absence the right 
argument is the entire expression on the right and the left argument is the noun immediately on the left. 
Three of the examples given there are 2 + 3 * 4  and (3 * 4) + 2 each of which has the value 14 
and 3 * 4 + 2 which is 18. Now let us keep this rule in mind and give a  step-by-step evaluation of the 
expression -/p  as follows:  
 -/p 

 1 - 2 - 3 - 4 - 5 - 6 

 1 - 2 - 3 - 4 - _1 

 1 - 2 - 3 - 4 + 1 

 1 - 2 - 3 - 5 

 1 - 2 - _2 

 1 - 2 + 2 

 1 - 4 

   _3 

We may also write this value as  
 (1 + 3 + 5) - (2 + 4 + 6)  

or as 
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 (1 - 2) + (3 - 4) + (5 - 6)  . 
In words the verb -/ with a list argument gives the sum of the odd-indexed items minus the sum of the 
even-indexed items in one-origin indexing, or the first item minus the second plus the third item minus 
the fourth, etc. Such a sum is called an alternating sum. 
 
 As another example we shall look at some data on the lengths of program segments and commercial 
breaks during a television program picked almost at random from the innumerable inane sitcom series 
appearing on commercial television. The data are given by the list Times  
 ⁄ƒƒƒƒƒ¬ƒƒƒƒƒƒ¬ƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒø 
 ≥9 0 8≥9 2 19≥9 5 0≥9 13 27≥9 16 32≥9 26 41≥9 29 25≥9 30 0≥ 
 ¿ƒƒƒƒƒ¡ƒƒƒƒƒƒ¡ƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒŸ 

indicating that the program began at 9:00:08 p.m., the first commercial started at 9:02:19 and ended at 
9:05:00, and so on with the program finishing at exactly 9:30. From these data we wish to find the total 
amount of program time in the nominal half-hour time slot. From the previous example involving only 
two times and the above discussion of alternating sums we can see that the expression 
 -/24 60 60&#. EACH Times 

which has the value _1282 gives the sum of the differences of successive pairs of times, i.e., the negative 
of the total program time. Thus the expression 
 24 60 60&#:-/24 60 60&#. EACH |. Times 

which is the same as the expression used in the previous example except that the reversed list of times is 
used gives the total program time 0 21 22 in hours, minutes and seconds which is  
 21 + 22 % 60  
or approximately 21.4 minutes.  
 
 Rational numbers are represented in J by the integer numerator and denominator separated by r and 
preceded optionally by a sign. For example, 4r5 is the rational number four-fifths which is represented 
conventionally as 4/5 and _3r2  is negative three-halves. As a simple example of rational arithmetic let 
us calculate the expected sample size for the coupon collector's problem for a population of 5 different 
coupons. Using the results of a previous section, we see that this expectation is given by  "5 times the sum 
of the reciprocals of the first 5 positive integers". The following sequence shows the step-by-step 
evaluation of this expression using rational arithmetic: 
 1r1 + 1r2 

3r2 

   3r2 + 1r3 

11r6 

   11r6 + 1r4 

25r12 

   25r12 + 1r5 

137r60 

   5r1 * 137r60 

137r12 

We note that 137r12 is the rational representation of the decimal number 137%12 or 11.4167 which is 
the decimal value of the expression 
 5 * +/ % 1 2 3 4 5  .   
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Finally we note that the rational calculations may be performed more simply as 
 5 * +/ % 1 2 3 4 5r1   
or even more simply still as cc 5r1 where cc is the verb for expectations developed in the previous 
discussion of this problem, and each of these expressions has the value 137r12 
  
 Extended precision integer arithmetic may be performed exactly by suffixing at least one of the 
integer arguments with x. For example !20 is 2.4329e18 while !20x is 
 2432902008176640000  ,  
and !52x, the number of arrangements of a deck of cards, is  
 80658175170943878571660636856403766975289505440883277824000000000000 

an integer with 68 digits. Also the number of bridge hands is 
 (!52x) % (!13x)^4  
or 
 53644737765488792839237440000  . 
 
 The distinguished British astronomer Sir Arthur Eddington who died in 1944 once estimated that the 
total number of particles in the universe was 
 3/2 × 2256 × 138 
which is approximately 2.4 × 1079. (Different references give slightly different values for this estimate but 
all are of the same order of magnitude.) This expression may be computed exactly as 
 207 * 2^256x 

which is the 80-digit integer 
 2396896247212445245267919389679839692562 

 6886825787596756167719889638017835466752   . 
 
 As an aside we refer to a remark by the nineteenth-century British economist and logician W. S. 
Jevons and quoted by Martin Gardner in one of his many books: “Can the reader say what two numbers 
multiplied together will produce the number 8,616,460,799? I think it is unlikely that anyone but myself 
will ever know; for they are two large prime numbers.” We may find the answer very simply from the 
expression  
 q: 8616460799x 

which has the value 
 89681 96079  , 
and verify it by the multiplication 
 89681 * 96079x 

to give 8616460799. 
 
 We shall now consider two methods of calculating π, one using a very slowly converging  infinite 
series and the second using a J primitive verb to give a value to an arbitrary number of digits. Finally we 
shall use the second method to arrange the digits of π in a "pi tree" with an arbitrary number of levels. 
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 The first method is due to the seventeenth-century Scottish mathematician James Gregory who 
obtained the infinite series 

 π/4 = 1 - 1/3 + 1/5 - 1/7 + $$$  . 
If we note that the infinite series is the alternating sum of the reciprocals of the postive odd integers, we 
have the following verb 
 pi=: 4: * [: -/ [: % [: odd ]  , 
and, for example, pi 100 is 3.13159. That the infinite series converges very slowly is shown by the fact 
that a thousand terms gives a value of 3.14059265 correct to only two decimals and a million terms 
gives the value 3.14159165 correct to only five places. 
 
 The monadic verb pi times o. gives the value of π times its argument, and, for example, o. 1 is 
3.14159. Roger Hui, one of the developers of J, has given the wonderful expression   
 <.@o.10x^n  
that gives π to n decimal places and for n=: 10, say, we have 31415926535. From this expression we 
may derive the monadic verb 
 pi=: [: ": [: <.@o. 10x"_^] 

which for an integer argument n gives a character string representing the truncated integer value of π to 
the power n. For example, pi 10 is  
 31415926535  ,  
pi 11 is  
 314159265358  ,  
and pi 50 is 
 314159265358979323846264338327950288419716939937510  .  
 
 If PI500=: pi 500,  we may use the expression 
 (10{.,:'3.'),. 10 50 $ }. PI500 

to display π to 500 decimal places as 
 3.14159265358979323846264338327950288419716939937510 

   58209749445923078164062862089986280348253421170679 

   82148086513282306647093844609550582231725359408128 

   48111745028410270193852110555964462294895493038196 

   44288109756659334461284756482337867831652712019091 

   45648566923460348610454326648213393607260249141273 

   72458700660631558817488152092096282925409171536436 

   78925903600113305305488204665213841469519415116094 

   33057270365759591953092186117381932611793105118548 

   07446237996274956735188575272489122793818301194912   

A frequency table of the first 500 decimal digits of π is given by the expression 
 (i. 10),: '0123456789' fr }. PI500 
and is 
  0  1  2  3  4  5  6  7  8  9 
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 45 59 54 50 53 50 48 36 53 52  . 
If we let the observed frequencies given as the second row in this table be the list  
 obs=: 45 59 54 50 53 50 48 36 53 52  , 
then the value of chi-square on the assumption that the digits are uniformly distributed is 50 chisq obs 
which is 6.88. Since 9 CSDISTN 6.88, there is no reason to doubt the hypothesis of a uniform 
distribution. 
 
 As a final diversion we shall arrange the digits of π in a triangular arrangement with an arbitrary 
number of levels as illustrated by the following example: 
  3    

    141   

   59265  

 3589793   
This is a very simple task if we note that an arrangement of n levels is constructed from n2 digits 
consisting of the digit 3 in the first level followed in the remaining levels by the first n2 - 1 decimal digits 
of π. This is accomplished by the following J verbs which for a given number of levels first compute π to 
the required number of decimal places, then arrange the digits as a right-angled  triangle, and finally as 
the required tree: 
 PiList=: [: pi [: <: [: *: ] 

 PiTriangle=: ([: #~ odd) ,/. PiList 

 PiTree=: ([: - [: i. -@]) |."0 1 PiTriangle 

The expression PiTree 4 gives the example at the beginning of the paragraph, and PiTree 10 gives 
the decoration below the title on the first page of this paper. 
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Appendix 1. A brief summary of J 
 
   

 3 + 5           NB. Plus 

8 

   2 * 3           NB. Times 

6 

   3 - 5           NB. Minus 

_2 

   15 % 6          NB. Divided by 

2.5 

   % 8             NB. Reciprocal 

0.125 

   2 + 3 * 4       NB. Precedence 

14 

   2 * 3 + 4 

14 

   (2 * 3) + 4 

10 

   4 + 2 * 3 

10 

   % 15 % 6        NB. Ambivalence 

0.4 

   2 | 0 1 2 3 4 5 NB. Residue 

0 1 0 1 0 1 

   6.5 <. 3        NB. Lesser of 

3 

   4 >. 10         NB. Larger of                

10 

   <: 8            NB. Decrement                  

7 

   >: 3.14         NB. Increment 

4.14 

   2.3 + 5 + 3.5 + 6  NB. Sum   

16.8 

   +/2.3 5 3.5 6 

16.8 

   w=: 2.3 5 3.5 6 

   +/w 

16.8 

   <./w            NB. Minimum 

2.3 

   >./w            NB. Maximum 

6 

   (<./,>./)w      NB. Min. and max. 

2.3 6 

   #w              NB. Tally 

4 

   (+/w) % #w      NB. Arithmetic mean 

4.2 

   (+/ % #) w       

4.2 

   am=: +/ % #      

   am w 

4.2 

   am 2.3 5 3.5 6 

4.2 

   dev=: - am      NB. Deviations from 

   dev w           NB.  mean 

_1.9 0.8 _0.7 1.8 

   i. 6            NB. Integers 

0 1 2 3 4 5 

   >: i. 6         NB. Positive  

1 2 3 4 5 6        NB.  integers 

   pos=: >: @ i.  

   pos 6  

1 2 3 4 5 6 

   ei=: i. @ >:    NB. Extended  

   ei 6            NB.  integers     

0 1 2 3 4 5 6 

   pos=: [: >: i.  NB. Pos. integers  

   pos 6           NB.  using [:     

1 2 3 4 5 6 

   i. 3 4 

0 1  2  3 

4 5  6  7 

8 9 10 11 

   +/i. 3 4        NB. Col. sums 

12 15 18 21 

   +/"1 i. 3 4     NB. Row sums   

6 22 38  
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• The standard ASCII character set is used. 
• The terminology of English grammar is used rather than that of programming languages. Functions are 

referred to as verbs. Their arguments are considered as nouns and pronouns instead of constants and 
variables, although the use of these latter terms is quite common. Verbs may be modified by adverbs and 
joined by conjunctions to give additional verbs. For example, the verb +/ is derived from the verb + plus 
by use of the adverb / insert to give the sum of the items of a list, and the conjunction rank, represented 
by ", in the expression +/"1  gives the row sums of a two-dimensional array.   

• Primitives, i.e., verbs, adverbs and conjunctions,  are represented by a single character or a single character 
followed by either a period or a colon. For example, > is the verb larger than, and 6 > 3.5 is 1 and 2 > 
7 is 0 indicating that the first relationship is true and the second false. The verb >. is larger of and gives 
the larger of its two arguments so that 6 >. 5 is 6, while >: is larger or equal and 6 >: 5 is 1 as is 
6 >: 6 but 2 >: 7 is 0. In addition, the verbs <./ and >./  are similar to the verb +/ and give the 
minimum and maximum, respectively, of their list arguments. 

• Most verb symbols represent one function when used with one argument on the right and another function 
when used with arguments on the right and left. For example, the verbs reciprocal and divided by are 
represented by the symbol %, so that % 8 is 0.125 and 15 % 6 is 2.5. Both forms may be used in the 
same expression so that % 15 % 6 is 0.4 and is interpreted as "the reciprocal of 15 divided by 6". 
Functions with a single argument are termed monadic, and those with two dyadic. As another example, the 
verb >: with a single argument represents increment so that >: 3.5 is 4.5, but with two arguments 
represents larger or equal.  

• Precedence amongst verbs is determined by parentheses, and in their absence the right argument is the 
entire expression on the right and the left argument is the noun immediately on the left. For example, the 
expression % 15 % 6 in the previous paragraph is "the reciprocal of (15 divided by 6)" rather than "(the 
reciprocal of 15) divided by 6".  Likewise, 2 + 3 * 4 is 14 as is (3 * 4) + 2 but 3 * 4 + 2 is 
18. 

• Negative numbers are indicated by a preceding underbar _ which is considered to be part of the number 
as is, for example, the decimal point. Also the decimal point is necessarily preceded by at least one digit so 
that, for example, two-fifths as a decimal fraction is represented as 0.4. 

• Nouns may be single items or atoms, one-dimensional arrays or lists, two-dimensional arrays or tables, or 
arrays of higher dimension or reports. Thus the expression a + b is a valid sum as long as a and b are 
compatible arrays. 

• Verbs may be defined in a functional or tacit manner without explicit arguments appearing in their 
definition. For  example, the monadic verb 
  am=: +/ % # 

gives the arithmetic mean However, explicit verbs may be defined where the arguments are specified in the 
definition which may extend over several lines and involve control structures similar to those in 
conventional programming languages.  

• Finally, we mention a construct of considerable usefulness known as a fork, an uninterrupted sequence of 
three verbs. The definition of the arithmetic mean given in the last paragraph is an almost mandatory 
example of a fork. A similar construct involving a sequence of two verbs is called a hook, an example being 
 dev=: - am  , 
where am is the arithmetic mean of the last paragraph, which gives deviations from the mean. The monadic 
verb cap, represented by [:, which caps the left branch of a fork, may often be used instead of the 
conjunction @ atop, or informally after, and, for example, pos=: >: @ i. and pos=: [: >: i. 
are alternative definitions of a verb for positive integers. 
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Appendix 2. A J Statistical Pacakage 
 
 
The statistical programs, written in J, version 4.06, are classified in the following categories: Frequency 
distributions  and diagrams, averages, variability, summaries, correlation and regression, analysis of 
variance, probability distributions, random variables, chi-square, and nonparametric methods. 
 
 The documentation of almost all of the verbs has the following format: 
  name Left argument, if any (Integers m, n; integer or real u, v ;  
    Right argument   lists x, y; table t) 
    Explicit result 
 
 
Discrete frequencies 
fr   x Range       
   y (Integer obs.)      
   Frequencies over range  
 

frtab  x Range 
   y (Integer obs.) 
   Frequency table over range 
 

nubfr  -         
   y (Integer obs.)      
   Nub frequencies 
 

nubfrtab - 
   y (Integer obs.) 
   Frequency table over nub 
 

Grouped frequencies 
grfr  x (End points of classes)   
   y (Integer or real obs.)    
   Class frequencies     
    
grfrtab x (End points of classes) 
   y (Integer or real obs.) 
   Frequency table with mid-points in  
    1st col. and freq. in 2nd. 
 

Barcharts 
barchart x (Range)       
   y (Frequencies)     
   Range in 1st col. and freq. as * in  
    2nd  
 
Stem-and-leaf diagrams 
SLdiag - 
   y (Integer) 
   Stem-and-leaf diagram 
 
SLfrtab  - 
   y (Integer) 
   Stem-and-leaf frequency table 
 

Means 
am   - 
   y 

   Arithmetic mean of y  

 

gm   - 
   y         

   Geometric mean of y 
 

hm   -         
   y 
   Harmonic mean of  y  
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Other averages 
median - 
   y         
   Median of y 
 

mode  - 
   y 
   Mode of y 
 

Variability 
var  -         
   y  
   Variance of y 
 

sd   - 
   y         
   Standard deviation of y 
 
Q1   -         
   y     
   First quartile of y 
 

Q2   - 
   y         
   Second quartile (median) of y  
           

Q3   - 
   y         
   Third quartile of y     
   

Summaries 
five  -         
            
   y 

   Min., 1st, 2nd and 3rd quartiles and  
    max. 
 

summary  - 
    y 
    Summary statistics (with labels) 
     of y 
 

Correlation and regression 
SR  x 
  y 
  Simple linear regression table with dep. 
var. y    and indep. var. x   
 

cov x 
  y 
  Covariance between x and y 
 
cor  x 
   y 
   Correlation coefficient between x  
    and y 
 
covtab - 
   List, each item of which is a list  
   Variance-covariance table of all   
    pairs  
 
cortab - 
   List, each item of which is a list  
   Correlation table of all pairs  
 
REG  - 
   List, each item of which is a list   
    with last item dep. variable 
   Multiple linear regression  
 
Analysis of variance 
ANOVA [Character string giving model] 
  Table or higher-dimensional array with  
  left argument giving specified terms.  
  Default  gives all terms,  e.g., ANOVA t  
  for a two-dimensional array is  
   'A B AB' ANOVA t. 
  Analysis-of-variance table 
 
 
Probability distributions 
binomial n, x  (Number of trials and prob.  
      of success in a single  
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      trial) 
     m or y (Number of    
      successes) 
     Probabilities 
 
poisson u (Mean) 
   n or y (Number of successes) 
   Probabilities 
 
geometric  p (Probability of success in a  
     single trial) 
    n or y  (Number of trials) 
    Probabilities 
 
hg   x (3-item list giving no. in  pop. of 
    type A,  no. of type not-A,   
    sample size)   
   n or  y (No. in sample of type A) 
   Hypergeometric probabilities 
 
NDISTN - 
   u or y 
   Prob. density function values 
 
TDISTN m (Degrees of freedom) 
   u or y 
   Prob. density function values 
 
CSDISTN  m (Degrees of freedom) 
   u or y 
   Prob. density function values 
 
FDISTN m, n (Num. & denom. d.f.) 
   u or y 
   Prob. density function values 
 
 Typical expressions involving the last four 
verbs for continuous distributions which give 
cumulative probabilities are as follows: 
 NDISTN 0 1 2 3 

 5 TDISTN 2.015 2.571 3.365 

 10 CSDISTN 12.5 16 18.3 

 5 20 FDISTN 2.16 2.71 3.29 4.1 

Verbs  for the corresponding density functions 
for the continuous distributions are ndistn, 
tdistn, csdistn and fdistn and have the 
same syntax 
 
Random variables 
rand  - 
   n, x 
   Uniformly distributed random   
    numbers, e.g., rand 3 is a 3- 
    item list, rand 2 4 is 2 by 4  
    table 
    
nrand [u,v]  
   n 
   n normal deviates with mean u and  
    s.d.  v. Default is st. normal 
 
exprand u 
   n 
   Exponentially distributed random  
      numbers with mean m 
 
Chi-square 
expfr  - 
   t (Exp. freq.) 
   t (Obs. freq.)  
 
chisq  x or t (Exp.  freq.) 
   x or t (Obs. freq.) 
   Chi-square  
 
chisq22 - 

   t (Obs. freq. for 2-by-2 table) 
   Probability 
 

Nonparametric statistics 
uranks - 
   y 
   Ranks unadjusted for ties 
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ranks  - 
   y 

   Ranks with ties averaged 
 
invranks - 
   y 

   Ranks in inverse order  
 
rcor  x 
   y 

   Rank correlation coefficient 
runs  - 
   y  

   Number of runs  
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Appendix 3. Graphics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
    Fig. 3.1. Barchart for throwing 1 die.      Fig 3.2. Barchart for throwing 2 
                   dice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 3.3. Stem and Leaf Frequency Table  Fig 3.4. Linear regression of yield 
                  vs. water. 
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Appendix 4. Windows forms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.1. Summary statistics and grouped frequencies. 
 

 

 
Figure 4.2. Coupon collector's problem. 
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Figure 4.3. Dice throwing. 
 

 



 67 
 

Appendix 5. J vocabulary 
 
= Self-Classify • Equal =. Is (Local) =: Is (Global) 
< Box • Less Than <. Floor • Lesser Of (Min) <: Decrement • Less Or Equal 
> Open • Larger Than >. Ceiling • Larger of (Max) >: Increment • Larger Or Equal 
_ Negative Sign / Infinity _. Indeterminate _: Infinity 
   
+ Conjugate • Plus +. Real / Imaginary • GCD (Or) +: Double • Not-Or 
* Signum • Times *. Length/Angle • LCM (And) *: Square • Not-And 
- Negate • Minus -. Not • Less -: Halve • Match 
% Reciprocal • Divide %. Matrix Inverse • Matrix Divide %: Square Root • Root 
   
^ Exponential • Power ^. Natural Log • Logarithm ^: Power 
$ Shape Of • Shape $. Sparse $: Self-Reference 
~ Reflex • Passive / EVOKE ~. Nub • ~: Nub Sieve • Not-Equal 
| Magnitude • Residue |. Reverse • Rotate (Shift) |: Transpose 
   
. Determinant • Dot Product .. Even .: Odd 
: Explicit / Monad-Dyad :. Obverse :: Adverse 
, Ravel • Append ,. Ravel Items • Stitch ,: Itemize • Laminate 
; Raze • Link ;. Cut ;: Word Formation • 
   
# Tally • Copy #. Base 2 • Base #: Antibase 2 • Antibase 
! Factorial • Out Of !. Fit (Customize) !: Foreign 
/ Insert • Table /. Oblique • Key /: Grade Up • Sort 
\ Prefix • Infix \. Suffix • Outfix \: Grade Down • Sort 
   
[ Same • Left  [: Cap 
] Same • Right   
{ Catalogue • From {. Head • Take {: Tail • {:: Map • Fetch 
} Item Amend • Amend }. Behead • Drop }: Curtail • 
   
" Rank ". Do • Numbers ": Default Format • Format 
` Tie (Gerund)  `: Evoke Gerund 
@ Atop @. Agenda @: At 
& Bond / Compose &. &.: Under (Dual) &: Appose 
? Roll • Deal ?. Roll • Deal (fixed seed)  
   
a. Alphabet a: Ace (Boxed Empty) A. Anagram Index • Anagram 
b. Boolean / Basic c. Characteristic Values C. Cycle-Direct • Permute 
d. Derivative D. Derivative D: Secant Slope 
e. Raze In • Member (In) E. • Member of Interval f. Fix 
   
H. Hypergeometric i. Integers • Index Of i: Integers • Index Of Last 
j. Imaginary • Complex L. Level Of L: Level At 
m. n. Explicit Noun Args NB. Comment o. Pi Times • Circle Function 
p. Polynomial p: Primes • q: Prime Factors • Prime Exponents
   
r. Angle • Polar s: Symbol S: Spread 
t. Taylor Coefficient t: Weighted Taylor T. Taylor Approximation 
u. v. Explicit Verb Args u: Unicode x. y. Explicit Arguments 
x: Extended Precision _9: to 9: Constant Functions  
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